

Construction and Performance of Network Codes.

J. de Curtó i Díaz.

Cerdanyola del Vallès (Barcelona), 2013.

- 1 PNC
- 2 Lattice Network Codes
- 3 C&F
- 4 C&F HAMMING
- 5 Improvement of the Coefficients
- 6 Conclusions

Universitat Autònoma de Barcelona

- 1 PNC

Physical-layer Network Coding

Toda

Interference is treated as a destructive phenomenon.

Network Coding Introduced the Idea

Intermediate nodes in a network are able to perform operations to the input packets rather than just forwarding them.

Network Coding at the Physical-layer? PNC

When multiple electromagnetic waves come together within the same physical space, they add. This additive mixing of electromagnetic waves is a form of Network Coding, performed by nature. PNC aims to exploit this fact.

The Source Transmits a Message

 $\mathbf{w}_l \in \mathbb{F}_p^k$, where \mathbb{F}_p is a finite field with p elements $\{0,1,2\ldots,p-1\}$ and p is a prime number.

The Relay Decodes a Linear Combination **v** of these Messages

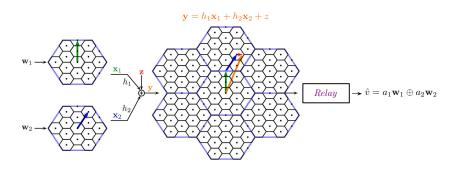
 $\mathbf{v} = a_1 \mathbf{w}_1 \oplus a_2 \mathbf{w}_2 \oplus \dots a_L \mathbf{w}_L$, where a_l are coefficients over the finite field \mathbb{F}_p .

The Destination Can Solve For the Original Messages if

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{1L} \\ a_{21} & a_{22} & a_{2L} \\ \vdots & \vdots & \vdots \\ a_{M1} & a_{M2} & a_{ML} \end{bmatrix} \text{ has rank } L.$$

NC Lattice Network Codes C&F C&F HAMMING Improvement

Physical-layer Network Coding Example



Outline

- 2 Lattice Network Codes
- 3 C&F
- 4 C&F HAMMING
- 5 Improvement of the Coefficients
- 6 Conclusions

What Are We Looking For?

If the waveforms at the transmitter are points of a lattice (that is \mathbb{Z} or $\mathbb{Z}[i]$), then every integer combination of these waveforms is itself a point of the same lattice.

The Algebraic Structure Necessary Is

Given a R-lattice Λ (e.g. $\mathbb{Z}[i]$) and a sublattice Λ' of Λ (e.g. $\pi\mathbb{Z}[i]$), the quotient group Λ/Λ' (e.g. $\frac{\mathbb{Z}[i]}{\pi\mathbb{Z}[i]}$) is a R-module. For a Lattice Network Code, the message space is $W = \Lambda/\Lambda'$.

Let's See a Bit More of Insight

The R/aR structure, being R a PID and a prime, forms a field. Thus, we will be able to find an isomorphism between $\mathbb{F}_p = \frac{\mathbb{Z}}{p\mathbb{Z}}$ and $\frac{\mathbb{Z}[i]}{\pi\mathbb{Z}[i]}$ if both fields have the same number of elements.

Lattice Network Codes The Lattice Z[i]

GAUSSIAN Integers

 $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}.$

Prime Factorization Used

If $p \equiv 1 \mod 4$ then $p = \pi \pi^*$ is a product of two conjugate primes π , π^* .

Example

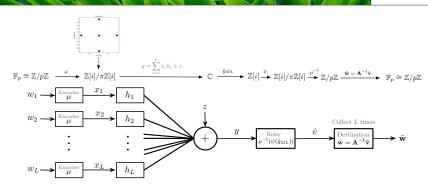
The prime p=5 satisfies $5\equiv 1\,\mathrm{mod}\,4$, so 5 has two conjugate GAUSSIAN prime factors.

Since $5 = 1^2 + 2^2$, 5 = (1 + 2i)(1 - 2i).

- 3 C&F

- 3 C&F
 - C&F System: Scalar Case
 - C&F System: Vectorial Case

C&F System: Scalar Case System Model



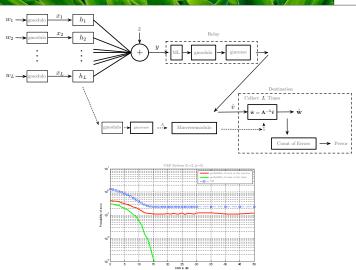
$$\mu(w_l) = w_l \mod \pi = w_l - \left[\frac{w_l \pi^*}{\pi \pi^*}\right] \pi$$

$$\mu^{-1}(z) = z \mod p = (z^* u \pi + z v \pi^*) \mod p$$

$$y = h_1 x_1 + h_2 x_2 + \dots + h_L x_L + z$$

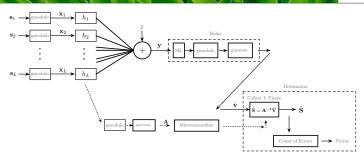
$$\hat{v} = a_1 w_1 \oplus a_2 w_2 \oplus \dots \oplus a_l w_l$$

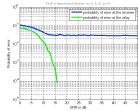
C&F System: Scalar Case Performance



- 3 C&F
 - C&F System: Scalar Case
 - C&F System: Vectorial Case

C&F System: Vectorial Case Performance





- 4 C&F HAMMING

HAMMING g-ary Codes

Generating Matrix

$$C = uG : u \in \mathbb{F}_p^k$$
.

We say that G is systematic if $G = (I_k | -P^T)$.

Parity Check Matrix

$$C = \{ v \in \mathbb{F}_p^n : Hv^T = 0 \}.$$

If G is systematic, a parity check matrix is $H = (P|I_{n-k})$.

C&F HAMMING *q*-ary Coded System Construction

HAMMING q-ary Code

Given an integer $r \geq 2$, let $n = \frac{q'-1}{q-1}$. The HAMMING q-ary code is a linear [n, n-r] code in \mathbb{F}_q^n , whose parity check matrix H is such that

$$H = (v_1|v_2|\dots|v_n)$$

where $v_1, \dots, v_2 \in F_q^r$ is a list of nonzero vectors satisfying the condition that no two vectors are scalar multiples of each other.

Example

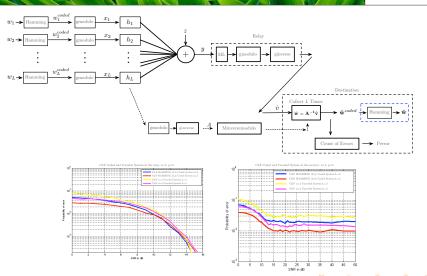
Let \mathbb{F}^5 and r=2, $n=\frac{5^2-1}{5-1}=6$. So, k=n-r=4. A straightforward way to generate a systematic HAMMING q-ary code is generating the matrix P as a $r\times k$ matrix with columns

$$P = \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \end{array} \right].$$

And then generate H and G using $G = (I_k | -P^T)$ and $H = (P | I_{n-k})$.

$$H = \left[\begin{array}{ccccccc} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 \end{array} \right] \quad \text{and} \quad G = \left[\begin{array}{cccccccccccc} 1 & 0 & 0 & 0 & 4 & 4 \\ 0 & 1 & 0 & 0 & 4 & 3 \\ 0 & 0 & 1 & 0 & 4 & 2 \\ 0 & 0 & 0 & 1 & 4 & 1 \end{array} \right].$$

C&F HAMMING q-ary Coded System Performance

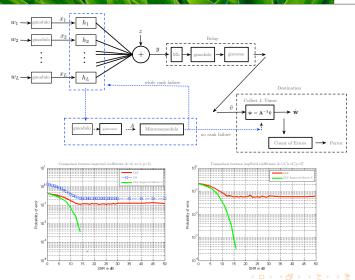


- 5 Improvement of the Coefficients

5 Improvement of the Coefficients

- Improvement of the Coefficients: Improved Matrix A
- Improvement of the Coefficients: Optimum Matrix A
- Improvement of the Coefficients: Improved Optimum Matrix ▲

Improved Matrix A Performance



- 5 Improvement of the Coefficients
 - Improvement of the Coefficients: Improved Matrix A
 - Improvement of the Coefficients: Optimum Matrix A
 - Improvement of the Coefficients: Improved Optimum Matrix ▲

Scalar Factor

$$\beta_{\textit{MMSE}} = \frac{\mathrm{SNR} \mathbf{h}^{\mathsf{T}} \mathbf{a}_{\textit{m}}}{\mathrm{SNR} ||h_{\textit{m}}||^2 + 1}.$$

Optimum Coefficients

Theorem: For a given vector of coefficients of the channel

 $\mathbf{h}_m = [h_{m1}, h_{m2}, \dots, h_{mL}]^T \in \mathbb{R}^L$, the computation rate is maximized by choosing in network coding the vector of coefficients $\mathbf{a}_m \in \mathbb{Z}^L$ as

$$\mathbf{a}_m = \arg\min_{\mathbf{a}_m \in \mathbb{Z}^L, \mathbf{a}_m \neq \mathbf{0}} (\mathbf{a}_m^T G_m \mathbf{a}_m)$$

where

$$\mathbf{G}_m = \mathbf{I} - \frac{\text{SNR}}{1 + \text{SNR}||\mathbf{h}_m||^2 \mathbf{H}_m}.$$

What's Behind this Minimization?

$$\mathbf{a}_m = \arg\min_{\mathbf{a}_m \in \mathbb{Z}^L, \mathbf{a}_m \neq \mathbf{0}} (a_m^T G_m a_m).$$

- CHOLESKY factorization.
- Lattice reduction: LLL algorithm.
- Vector search: SCHNORR EUCHNER method.

Optimum Matrix A Solving the ILS Problem

ILS Problen

$$\min_{\mathbf{z} \in \mathbb{Z}^n} ||\mathbf{y} - \mathbf{B}\mathbf{z}||^2$$

this problem is analogous to solving

$$\min_{z \in \mathbb{Z}^n} (\mathbf{y} - \mathsf{Bz})^T \mathsf{V}^{-1} (\mathbf{y} - \mathsf{Bz}).$$

One can first compute the CHOLESKY factorization $V = R^T R$, then solve two lower triangular linear systems $R^T \overline{y} = y$ and $R^T \overline{B} = B$.

As our real aim is to solve the SVP problem

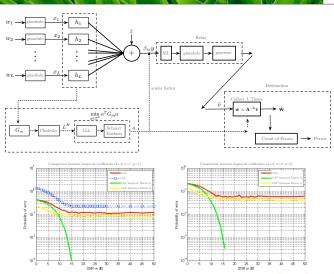
$$\min_{z \in \mathbb{Z}^n} (\mathbf{z})^T \mathbf{V}^{-1} (\mathbf{z})$$

we use
$$B = -I_n$$
 and $y = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$ and therefore $\overline{B} = R^T \setminus B$ and $\overline{y} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix}$.

Finally the problem becomes

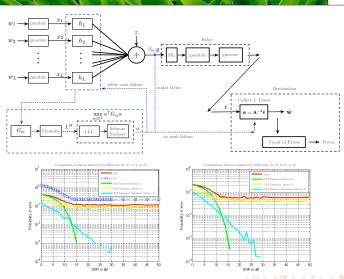
$$\min_{z\in\mathbb{Z}^n}||\overline{\boldsymbol{y}}-\overline{\boldsymbol{B}}\boldsymbol{z}||^2.$$

Optimum Matrix A



- 5 Improvement of the Coefficients
 - Improvement of the Coefficients: Improved Matrix A
 - Improvement of the Coefficients: Optimum Matrix A
 - Improvement of the Coefficients: Improved Optimum Matrix **A**

Improved Optimum Matrix A Performance



- 1 PNC
- 2 Lattice Network Codes
- 3 C&F
- 4 C&F HAMMING
- 5 Improvement of the Coefficients
- 6 Conclusions

Conclusions

- Mathematical tools. √
- C&F uncoded system model scalar:
 - MATLAB *L*-dimensional $\forall p$ implementation using a working L=2, p=5 code base with given ML detector. $\sqrt{}$
- C&F uncoded system model vectorial:
 - MATLAB implementation *n*-dimensional. √
- C&F HAMMING *q*-ary coded system model:
 - MATLAB implementation C&F HAMMING (6,4) coded system n=4. $\sqrt{}$
- Improvement of the Coefficients:
 - lacksquare MATLAB implementation improved matrix lacksquare. $\sqrt{}$
 - MATLAB implementation optimum matrix **A**. √
 - lacktriangle MATLAB implementation improved optimum matrix lacktriangle. $\sqrt{}$
- Implementation of sphere decoder for ML detection:
 - Adapting the code used for optimum matrix A as an efficient sphere decoder. \(\sqrt{} \)

Obtained Results

- We have explained the lattice theory needed.
- We have provided several MATLAB code implementations for C&F system.
- The results of the improvement of the coefficients show:
 - Improved optimum matrix **A** works really well for SNR low.
 - Improved matrix **A** has a better slope performance for SNR high.

DE CURTÓ I DÍAZ Joaquim.

Thank you.

