
City University of Hong Kong

Master Thesis

A Library for Fast Kernel Expansions
with Applications to Computer Vision

and Deep Learning

Author:

I. de Zarza i Cubero

zarza@cmu.edu

Carnegie Mellon.

zarza.2@my.cityu.edu.hk

City University of Hong Kong.

Supervisors:

A. Smola

smola@cs.cmu.edu

Carnegie Mellon.

C. W. Ngo

cwngo@cs.cityu.edu.hk

City University of Hong Kong.

A dissertation submitted in partial fulfillment of the requirements

for the degree of Master of Science

in the

Department of Electrical Engineering

at

City University of Hong Kong.

November 2014.

https://www.cityu.edu.hk
https://www.dezarza.tw
https://alex.smola.org
https://www.cs.cityu.edu.hk/~cwngo/
https://www.ee.cityu.edu.hk
https://www.cityu.edu.hk




Carnegie Mellon.
Pittsburgh, 2014.





“A journey of a thousand miles begins with one small step”.

Laozi.





CITY UNIVERSITY OF HONG KONG.

Abstract

Master of Science.

A Library for Fast Kernel Expansions with Applications to Computer

Vision and Deep Learning

by I. de Zarza i Cubero.

This thesis provides the first open implementation of the kernel expansion approxima-

tion Fastfood. The code is optimized for fast CPU intensive numerical computation.

Vectorized code with intrinsic functions Intel are used. Its main contribution is a SIMD

implementation of the Fast Walsh Hadamard that performs better than the current

state-of-the-art. Moreover, applications to Computer Vision and Deep Learning are

enclosed with practical hints on Machine Learning.

https://www.cityu.edu.hk




Declaration of Authorship

I, DE ZARZA I CUBERO Irene, declare that this thesis titled, “A Library for Fast

Kernel Expansions with Applications to Computer Vision and Deep Learning” and the

work presented in it are my own.

Signed: De Zarza i Cubero.

Date: 22 November 2014.

viii





Contents

Abstract vi

Declaration of Authorship viii

List of Figures xii

List of Tables xiii

1 Foreword 1

2 Introduction 3

2.1 How to Read this Thesis? . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Background: Theory Behind the Algorithms 5

3.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Learning with Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.2 Support Vector Machines (SVM) . . . . . . . . . . . . . . . . . . . 6

3.3 Learning the Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.1 Gradient Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3.3 Softmax Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Preliminary Work 11

4.1 Building our Own Dataset: Exploiting Flickr . . . . . . . . . . . . . . . . 11

4.1.1 Description of the Software . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Getting the Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2.1 MTurk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Extraction of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.1 Landmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.3.2 LBP Handcrafted Features . . . . . . . . . . . . . . . . . . . . . . 14

4.3.3 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.4 Stage of Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.5 Details of the System and Experimental Results . . . . . . . . . . . . . . . 15

4.5.1 Details of the System . . . . . . . . . . . . . . . . . . . . . . . . . 15

x



xi

4.5.2 K-Fold Crossvalidation . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Fast Kernel Expansions: Randomized Features 19

5.1 Random Kitchen Sinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Fastfood: Kernel Expansions in Log-linear Time . . . . . . . . . . . . . . 20

5.3 Fast Walsh Hadamard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6 Fast Implementation of Fastfood: Library McKernel 23

6.1 Description of the Software . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Optimizing Code: Techniques of Vectorization . . . . . . . . . . . . . . . . 27

6.2.1 SIMD Intrinsic Functions . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.2 Blocks to Vectorize . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.3 Cache-friendly Code . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2.4 Data Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Pseudo-random Numbers by Hashing . . . . . . . . . . . . . . . . . . . . . 28

6.3.1 Pseudo-random Numbers Mersenne Twister . . . . . . . . . . . . . 29

6.3.2 Pseudo-random Numbers Distributed by Hashing . . . . . . . . . . 29

6.4 FWH Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Using Features McKernel for Recognition of Ethnicity 31

8 Neural Networks and Deep Learning: a Deep Network Using McKer-
nel 33

8.1 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.3 Theory Behind the Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.3.1 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.3.2 Checking Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.3.3 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.3.4 Stacked Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . 42

8.4 McKernel in the Deep Network and Implementation . . . . . . . . . . . . 43

8.4.1 Highlights of the Code . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.4.2 Where Does McKernel Fit in? . . . . . . . . . . . . . . . . . . . . . 44

9 Contributions and Further Work 45

Bibliography 47

Résumé 49



List of Figures

4.1 Interface MTurk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 LBP Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Extraction of Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 System of Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 The Fast Walsh Hadamard Applied to a Vector of Length 8. . . . . . . . . 22

6.1 FWH Comparison between Spiral and McKernel. . . . . . . . . . . . . . . 30

7.1 McKernel Embedded in the Classification System of Ethnicity. . . . . . . 32

8.1 Example of Simple Neural Network. . . . . . . . . . . . . . . . . . . . . . 34

8.2 Example of Three-layer Neural Network. . . . . . . . . . . . . . . . . . . . 35

8.3 Example of Autoencoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xii





List of Tables

4.1 K-Fold Crossvalidation of Color Space Applied to Classification of Ethnicity. 17

4.2 Experimental Results. System of Ethnicity. . . . . . . . . . . . . . . . . . 18

6.1 FWH Results Comparison. Spiral and McKernel. . . . . . . . . . . . . . . 30

xiv





Dedicated to De Curtó i Dı́az.

xvi





Chapter 1

Foreword

This thesis was developed as an exchange student at Carnegie Mellon, ML Department

and Robotics. I had the once in a lifetime opportunity to carry out research in one

of the best CS Departments in the world. Being able to learn the tricks of the trade

from the ML magicians of today has been one of the most amazing experiences of my life.

I hope you enjoy reading this thesis as much as I have enjoyed working in Machine

Learning and Computer Vision. What follows next is the description of a six-month

adventure.

1



2



Chapter 2

Introduction

This dissertation is part of a work developed in collaboration with de Curtó i Dı́az et al.

[2014], both theses are complementary explanations of the same project.

The work is divided in the following chapters:

• Chapter 1. Brief foreword.

• Chapter 2. Gives a brief description of the work done in each chapter.

• Chapter 3. Describes the basic theory behind kernels, support vector machines

and also the algorithms that we need to know in order to understand the theory

behind the structure of Deep Learning used in Chapter 8.

• Chapter 4. Implements from scratch a whole system of classification. Download-

ing the images to build a dataset, then using online crowdsourcing resources to get

the labels, engineering handcrafted features, doing classification with state-of-the-

art libraries and finally crossvalidating the parameters to get the best results.

• Chapter 5. Introduces randomized features: a solution to perform non-linear

classification using a linear classifier and a previous mapping. In particular, we

present all necessary theory to explain an approximating kernel expansions able

to be computed in log-linear time: Fastfood (Le et al. [2013]).

• Chapter 6. Introduces the first open implementation of Fastfood: Library McK-

ernel, explaining procedures of vectorized code optimization and implementation

details. A SIMD implementation of the Fast Walsh Hadamard that performs better

than current state-of-the-art methods is provided.

3



4

• Chapter 7. Defines and shows the results of applying features Fastfood in the

application of Computer Vision built in Chapter 4: classification of ethnicity.

• Chapter 8. Gives a brief introduction to Neural Networks and Deep Learning

and describes a deep network with embedded Fastfood.

• Chapter 9. Summarizes the contributions of this thesis and the work in progress.

2.1 How to Read this Thesis?

The dissertation is written with the ML practical user in mind. Theoretical background

has been provided when necessary, but long mathematical discussions have been avoided.

It is intended to give practical implementation hints putting emphasis on the conceptual

understanding.



Chapter 3

Background: Theory Behind the

Algorithms

In this chapter we give a brief introduction to some concepts that we will need throughout

the thesis.

3.1 Supervised Learning

In the framework of supervised learning, the algorithm uses the labeled training data to

produce a function, which will be used to classify new examples. The idea of supervised

learning is to train your algorithm using well labeled examples so that is able to generate

a model and generalize to new observations.

This idea contrasts with unsupervised learning, where the algorithm is given non-labeled

data and its goal is to find hidden patterns and extract useful features of the given data.

Supervised learning has proven to be successful in many applications, achieving state-

of-the-art performance, however, the need of huge amounts of labeled data is one of its

drawbacks. We will see in the first chapters of the thesis a supervised application in

Computer Vision while in the chapters on Deep Learning, we will also see how unsuper-

vised learning with autoencoders can be used to leverage the usage of labeled data.

5



6

3.2 Learning with Kernels

We will introduce two basic concepts: Kernel Machines and Support Vector Machines.

This section is based on Song [2008].

3.2.1 Kernels

A linear classifier can be expressed as
∑

c αc〈x,x′〉, which follows the common trend in

Machine Learning that many algorithms can be expressed in terms of an inner product

between observation x and x′. This can also be extended to inner products between

observation matrices, XX′. The key idea arising from this observation is the kernel

trick (Schölkopf and Smola [2002]), which can be formulated as follows, whenever inner

products are used, they can be replaced by kernel functions. The kernel trick converts

a linear algorithm into a non-linear one by using kernels. The non-linear mapping of

the kernel transforms observations in a low dimensional space into elements in a high

dimensional space. Then, we can separate the data linearly in this higher dimensional

space being this equivalent to a non-linear separation in the original space. While

different kernel functions can be used to incorporate different non-linear behaviors, the

ML algorithm remains unchanged. This reusability made Kernel Methods popular in a

wide range of applications.

3.2.2 Support Vector Machines (SVM)

Support Vector Machines try to solve the following problem: given a set of observa-

tions X = {x1,x2, . . . ,xm}, for example being xc a set of face images, and Y =

{y1,y2, . . . ,ym}, being its associated labels, for example if the face image is male or

female. The task to solve is to learn a classifier f : X → Y that is able to give you

the labels of a new observation. A SVM linear uses a hyperplane to separate the data

linearly, f(x) = sign(〈w,x〉 + b). The main goal of the SVM is to separate the data

ensuring that the margin is maximized, that is the minimum distance between the hy-

perplane and the observations is maximized.

This can be expressed as a problem of CONVEX optimization:

max
w,b,γ

γ (3.1)

s.t ∀c, yc(〈w,x〉+ b) ≥ γ and ||w||2 = 1. (3.2)



7

We can express the dual problem with the Lagrangian as follows

L = −γ −
∑
c

αc[yc(〈w,x〉+ b)− γ]− λ(||w||2 − 1),∀αc ≥ 0, λ ≥ 0. (3.3)

If we formulate the dual problem and differentiate the primal variables w, b, γ and set

the derivative to zero

∂L

∂w
= −

∑
c

αcycxc − 2λw = 0 (3.4)

∂L

∂b
= −

∑
c

αcyc = 0 (3.5)

∂L

∂γ
= −1 +

∑
c

αc = 0. (3.6)

If we substitute those results back in Equation 3.3 we get

min
α

∑
c

αcαzycyz〈xc,xz〉 (3.7)

s.t.
∑
c

ycαc = 0,
∑
c

αc = 1, ∀αc ≥ 0. (3.8)

This is a CONVEX problem as we can express the dual objective in matrix format as

αTAα, where α = (α1, · · · , αm)T and Acz = ycyz〈xc,xz〉. Where matrix A is positive

semi-definite and equal to the Hessian of the problem of optimization, furthermore all

the constraints are affine. Hence we are in front of a problem of CONVEX optimization.

We can see that in the dual problem the input just shows up in the objective function

in the form of a dot product and not depends on w. This provides a basis for the ker-

nel trick: replace the inner products with a non-linear mapping between observations

k(x,x′) = 〈φ(x), φ(x′)〉. In this case A can be expressed as Acz = ycyzk(xc,xz). As

long as k(xc,xz) maintains the convexity of A, we can replace by any kernel function

that satisfies A is positive definite.

Using kernels the SVM decision rule can be expressed as f(x) = 〈w, φ(x)〉+ b.



8

3.3 Learning the Basics

In this section we summarize some key concepts used in Chapter 8.

3.3.1 Gradient Descent

This algorithm of first-order optimization relies on the fact that −∇f(x(k)) is a descent

direction to determine a local minimum of a function f . The algorithm is defined as

follows:

x(k+1) = x(k) − ν(k)∇f(x(k)). (3.9)

The main drawback is the parameter of control ν(k) > 0, which for too small values it

will converge very slowly and for too large values it will cause the algorithm to overshoot

the minimum and diverge.

3.3.2 Logistic Regression

Let {(x(1), y(1)), · · · , (x(m), y(m))} be the training set. The labels are y(c) ∈ {0, 1} and

the function of hypothesis can be written as follows:

hθ(x) =
1

1 + exp(−θTx)
(3.10)

and the parameters θ of the model are trained to minimize the cost function

R(θ) = − 1

m

[
m∑
c=1

y(c) log hθ(x
(c)) + (1− y(c)) log(1− hθ(x(c)))

]
. (3.11)

3.3.3 Softmax Regression

This model generalizes logistic regression to problems of classification with multiple

classes y(c) ∈ {1, 2, · · · , k}. In other words, the label y can take more than two possible

values, for example, in the classification problem of ethnicity (see Chapter 3) there are

four different possible values (k = 4), one for each given class; Caucasian (y = 1), East



9

Asian (y = 2), South Asian (y = 3) and African American (y = 4).

The function of hypothesis can be written as follows:

hθ(x
(c)) =


p(y(c) = 1|x(c); θ)
p(y(c) = 2|x(c); θ)

...

p(y(c) = k|x(c); θ)

 =
1∑k

z=1 exp(θTz x
(c))


exp(θT1 x

(c))

exp(θT2 x
(c))

...

exp(θTk x
(c))

 . (3.12)

Given a test input x, we want that our function of hypothesis estimates the probability

p(y = z|x), ∀z = 1, · · · , k. Therefore, the output of the function of hypothesis will be a k

dimensional vector, which elements add up to one, giving the k estimating probabilities.

Let 1∑k
z=1 exp(θ

T
z x

(c))
be the normalized factor. Moreover, θh ∈ Rn+1 where h = 1, · · · , k

are the parameters of the model that are learned to minimize the cost function:

R(θ) = − 1

m

[
m∑
c=1

k∑
z=1

1{y(c) = z} log
exp(θTz x

(c))∑k
l=1 exp(θTl x

(c))

]
. (3.13)

Which is in turn a generalization of the logistic regression cost function in Equation 3.11

and can be rewritten as follows:

R(θ) = − 1

m

[
m∑
c=1

1∑
z=0

1{y(c) = z} log p(y(c) = z|x(c); θ)
]
. (3.14)





Chapter 4

Preliminary Work

This chapter is an introduction to Computer Vision: it will be nice to see the difference

between working on a handcrafted design throughout the chapter, which is how con-

ventional CV feature engineering has been done, and how Deep Learning avoids this in

Chapter 8.

A system of face recognition for classification of ethnicity is built from scratch. This

work was done in collaboration with the Robotics at the HS Laboratory. Four different

sections divide the chapter: in the first part we download massively images from Flickr,

next we create an interface in MTurk to label a subset of these images. In the third

section we extract features and in the fourth section we finally do classification.

4.1 Building our Own Dataset: Exploiting Flickr

There are a lot of public datasets for CV research purposes so, why do we want to create

our own? The main reason is because they are pose and illumination controlled as well

as poorly balanced; which means that if you want to classify a dataset using gender

and the 95% of the images are from males your accuracy in testing will be biased. The

second reason is for an academic purpose, just for the sake of learning how to build it

and challenge ourselves to do so.

4.1.1 Description of the Software

The design of the code has been split into two steps: the first one has been designed in

Python to download the metadata information from the images into a file. The second

11



12

step is done in Matlab. It uses the output file generated in the previous step to retrieve

the image from Flickr.

• PYTHON code downloads using the API the URL address of the images from

Flickr.

• MATLAB code uses the output file .txt to download the images from Flickr avoid-

ing being banned by letting certain time between requests. The code includes

different functionalities:

– A filter to avoid noisy images, based on using negative tag words that must

be not included in the tags of the images to be downloaded.

– An option of temporal selection to choose the temporal interval of time when

the images have been taken.

– An option of searching multiple words implemented to improve the diversity

of the images.

The code took, using a single server machine, two weeks to download a dataset with two

million images.

4.2 Getting the Labels

Next step in supervised Machine Learning is to obtain the labels of the images. To

achieve this goal the initial raw dataset from Flickr (2.000.000 images) will be reduced

to 14.000 images, and MTurk will be used to allow external people label the data.

4.2.1 MTurk

A HTML interface, where we can upload the images and allow the MTurk workers to

select the proper face attributes, has been designed. In Figure 4.1 it is shown the three

step interface: the HTML has a first welcome page with all the instructions you need

to follow and a help page link. Then, the second page shows the face image and all the

labels to be selected as a display button. Finally, a thanks page is shown in the third

step. Further, to avoid empty labels, we have used several scripts in JavaScript that

prevent users from not answering all questions.



13

Figure 4.1: Interface MTurk.

Both HS Laboratory webserver and a sites from Google have been used to upload the

images to MTurk. Also, we have coded a PYTHON script to create a CSV file to save

all URL images.

4.3 Extraction of Features

The step of extraction of features in the preliminary work has been performed using first

a face tracker (Xiong and Torre [2013]) to recognize 49 key points in the face, called

landmark points. Then, we have applied a handcrafted LBP (Local Binary Pattern)

feature in each patch being centered at a landmark point, Figure 4.3.

4.3.1 Landmarks

In Figure 4.2 we can see an example of the resulting 49 facial points after applying the

face tracker to the image. Overlapping between patches will be useful in the performance

of the system, this empirical observation was done also by Lu et al. [2013].

Why are we using 49 landmark points? The face tracker in Xiong and Torre [2013]

contains 49 points, but not all of them provide the same information. For example,

in the classification of ethnicity if we just use 14 points (that is, considering just the

upper part of the face, in other words, nose and eyes) we have the 90% of the whole

facial information, however if we want to achieve the best performance using the given

system, empirically we see that we get better results if we use all given points to extract

features. The ones that are giving more importation, though, are the two center points

in the eyes and the point on the tip of the nose. This seems logical, eyes are very

important to distinguish between different ethnics and also the nose, not only by its

form but also because it is a point where we have good access to skin color, which is

particularly important in this problem.



14

4.3.2 LBP Handcrafted Features

Before extraction of features, the original images are cropped to extract the faces and

processed by a normalization and an affine transformation. Then, we use features Mul-

tiscale Uniform Local Binary Pattern (ULBP Multiscale) in four different channels: the

HSV channels (see Table 4.1) and a fourth informative channel in gray scale with pre-

processing Tan and Triggs [2007].

The vector of LBP features (Ahonen et al. [2011]) is computed in the following manner:

for each pixel in the selected patch, we compute the difference between the selected pixel

and its neighbors to create a threshold and obtain a binary number, then for each of the

pixels in the patch we have a binary number and then we compute an histogram with

these numbers, which is the vector of features.

for each pixel:

Select patch around landmark point and

LBP

LBP Multiscale

LBP Uniform: Just two transitions allowed!

Figure 4.2: LBP Features.

LBP Multiscale considers neighbors with a given radius instead of assuming radius one.

LBP Uniform considers only binary numbers with two transitions (from 0 to 1 and vice

versa), so that all histograms have the same length for a given number of neighbors (for

instance, we have a length 59 histogram vector using 8 neighbors).

4.3.3 Preprocessing

The main problems of using a real dataset are non-controlled illumination and different

pose. To improve the performance under non-controlled light conditions, we introduce



15

a step of preprocessing based on Tan and Triggs [2007].

The step of preprocessing consists on a cascade of methods based on the above men-

tioned paper which are: gamma correction, filtering Difference of Gaussian (DoG) and

contrast equalization.

After applying this step of preprocessing (see Table 4.2), the performance of the system

improves around 2%.

Image

+

+

+

...

...

...

+ ...

· · ·
· · ·
· · ·

...

...

...

...

Multiscale Uniform LBP Histograms Feature

H

S

V

G 

ULBP Multiscale

Figure 4.3: Extraction of Features.

4.4 Stage of Classification

Different classifiers have been used in this part of the work: we started by a simple per-

ceptron, the simplest linear classifier, then we tried different configurations and finally

moved to more sophisticated algorithms: AdaBoost (using MULTIBOOST Library, Ben-

bouzid et al. [2012]) and Support Vector Machines (using LIBSVM library, Chang and

Lin [2011]). SVM Linear has achieved the best performance.

4.5 Details of the System and Experimental Results

4.5.1 Details of the System

In the first step, using the original images we write the code to save the landmark coor-

dinates in one folder and the normalized images in another one. Then, we wrote a Linux



16

Shell script to save the labels from MTurk from CSV to a JSON file. Finally, we wrote

a script to save the image, landmark paths and the label of each image in a CSV file.

In the second step, we use the output CSV file with all data information to do the

extraction of LBP features. We use an optimized LBP Uniform function in C++ with

patchsize, radius and number of neighbors as input parameters to perform the final step

of crossvalidation. We wrote the code to generate an output file in SVMLight format.

Once we have the features, we proceed with the classifier. It has train and test files as

input data and generates a model and a result file as output.

Finally, in the last step a MATLAB script was written to perform the process of cross-

validation, Figure 4.4, calling the binary files of the C++ code and parallelizing the

execution in a server with twelve cores. This step will help us choose the best parame-

ters for the LBP and the classifier.

Original Image

Folders

Landmark points

Normalized image

Labels (.json)

CSV

AMTurk

+

+

CSV
(path image, path landmark, label)

LBP

File format: SVMLight
(label, feature)

(patch size, R, N)

CLASSIFIER

model, results

(train.data, test.data)(weak learners)

CROSSVALIDATION

Figure 4.4: System of Classification.

4.5.2 K-Fold Crossvalidation

To perform the step of crossvalidation we use K-Fold Crossvalidation, a method con-

sisting on first splitting the dataset into two, one part for training and validation and a



17

second for testing. Then the first part is split in training and validation using the fol-

lowing procedure: we divide the set into chunks of k elements assigning a number from 1

to k to each element. For each round you take all elements with one key, for example 2,

to validate and all the other elements to train. Finally we average the results to obtain

a measure of accuracy. In each one of these settings, we use a different configuration of

parameters for the system, and we get the results for all possible combinations of the

given parameters. Lastly, we select the parameters that give better accuracy results.

Using this method we have crossvalidated the LBP parameters (patch size, number of

neighbors and radius), the color space and in the classifier AdaBoost the number of weak

learners.

4.5.3 Benchmarks

In this section we have used LIBSVM library (Chang and Lin [2011]) to perform the

step of classification.

All the following results in crossvalidation are done using ULBP Multiscale with SVM

Multiclass Linear as a classifier applied to classification of ethnicity (using four classes:

Caucasian, African American, East Asian and South Asian).

The best patchsize, number of neighbors and radius are 11, 8 and 4, respectively. More-

over, the number of different radius to apply multiscale achieving maximum performance

is 3 and the best three values of the radius are 4, 5 and 6.

The results for the crossvalidation of color space are shown below:

Color space RGB LUV YCrCb HSV

Accuracy (%) 77.4983 78.1971 78.2669 81.4116

Table 4.1: K-Fold Crossvalidation of Color Space Applied to Classification of Ethnic-
ity.

Table 4.2 shows the experimental results of the system applying ULBP and SVM Linear

in the simulations.

We start by just using plain ULBP with SVM and subsequently build a more complex

system. We see how using ULBP Multiscale gives better results, and also that the HSV



18

Accuracy (%)

ULBP. SVM Linear. 77.71
ULBP Multiscale(3). SVM Linear. 78.27
ULBP Multiscale(3). SVM Linear. HSV. 81.42
ULBP Multiscale(3). SVM Linear. HSV. Preprocessing. 82.36
ULBP Multiscale(3). SVM Linear. HSV. Optimized preprocessing. 85.02

Table 4.2: Experimental Results. System of Ethnicity.

color space works quite well for estimation of ethnicity. A preprocessing to avoid changes

in the illumination also helps considerably.



Chapter 5

Fast Kernel Expansions:

Randomized Features

In this chapter random features are introduced as an alternative to the kernel trick

(Schölkopf and Smola [2002]). The motivation is to face up the main drawback of SVM

non-linear, which is the high cost in term of computation in the training step. In practice

it is not recommended to use SVM for a large dataset (more than 50.000 observations in

the training step). Therefore, the large datasets used by Google, Amazon and Facebook

for example, need a linear version of the classifier to deal with and random features

becomes a good solution to this problem.

Random features (Rahimi and Recht [2007]) make supervised algorithms of learning

scalable so that they can be used in large-scale datasets. The idea is that traditional

algorithms of learning try to optimize parameters that we do not actually need to opti-

mize. Instead, some parameters are randomized and then we optimize over the others.

This recipe opens the line to good algorithms of learning that can run extremely fast

and are very easy to implement.

Kernel Machines are state-of-the-art architectures for classification, but training them is

slow. The idea is to pass the data through random features, and train a linear classifier

on this mapped data. The random features are designed so that the classifier generated

by concatenating random features with a linear algorithm is the same as using a non-

linear algorithm.

19



20

5.1 Random Kitchen Sinks

The proof which guarantees that kernel functions can be expressed as an inner product

in some HILBERT Space is MERCER Theorem.

Theorem 5.1 (Mercer). Any kernel k : X×X → R satisfying
∫
k(x, x′)f(x)f(x′)dxdx′ ≥

0 for all L2(X ) measurable functions f can be expanded into

k(x, x′) =
∑
z

λzφz(x)φz(x
′). (5.1)

Being λz > 0 and the φz are orthonormal on L2(X ).

The Key idea of Rahimi and Recht [2007] is to use sampling to approximate the sum in

Equation 5.1 as

λc ∼ p(λ) where p(λc) ∝ λc (5.2)

and k(x, x′) ≈
∑

z λz
n

n∑
c=1

φλc(x)φλc(x
′). (5.3)

5.2 Fastfood: Kernel Expansions in Log-linear Time

Le et al. [2013] follow closely Random Kitchen Sinks but it accelerates from O(nd) to

O(n log d) while requiring only O(n) rather than O(nd) storage. The key is to accelerate

the multiplication by a random matrix.

The main idea of the algorithm is that HADAMARD matrices, when combined with

scaling matrices Gaussian, behave very much like random matrices Gaussian.

Le et al. [2013] prove that the approximation Fastfood is unbiased, has low variance,

and concentrates almost at the same rate as Random Kitchen Sinks while being 100x

faster with 1000x less memory.

Let Z be the GAUSSIAN random matrix we want to parameterize by:

V :=
1

σ
√
d
SHGΠHB (5.4)

where

• B is a matrix diagonal with entries i.i.d. +1 and −1 from a distribution Uniform.



21

• H is the Walsh Hadamard computed using FWH in Library McKernel.

• Π is the matrix of permutation generated using the algorithm Fisher Yates in

Library McKernel.

• G is a matrix diagonal which entries are i.i.d. and follow a random distribution

Normal (0, 1).

• S is also a matrix diagonal which entries follow a chi distribution with d degrees

of freedom and are multiplied by the FROBENIUS norm of matrix G.

As S, G and B are matrices diagonal they can be computed and stored in the worst

case in O(n). Π can be computed in linear time using algorithm Fisher Yates and H

can be computed using the FWH algorithm in place and in time O(n log(d)). So, the

total computational time of Fastfood is carried out in O(n log(d)) and the storage cost

is O(n).

5.3 Fast Walsh Hadamard

The Walsh Hadamard (WH) Hm can be defined as a 2m × 2m matrix scaled by a factor

of normalization. The more common definition of this transform is given as follows in a

recursive way:

Defining the 1× 1 Hadamard by the identity H0 = 1, then ∀m > 0, Hm is defined as:

Hm =
1√
2

(
Hm−1 Hm−1

Hm−1 −Hm−1

)
(5.5)

and for m > 1 we have

Hm = H1 ⊗Hm−1. (5.6)

A WH naive implementation has a computational complexity of O(N2), so for our pur-

pose we will use Fast Walsh Hadamard (FWH), an efficient algorithm to compute the

WH in O(N logN).

FWH is an algorithm divide and conquer, the key idea is that it recursively breaks down

a WH of size N into two smaller WHs of size N/2. See Figure 5.1.



22

� � � �

�� ��

� � � �

+ + + +

+ + + +

++++

7 13 217 23 49 33 97

Figure 5.1: The Fast Walsh Hadamard Applied to a Vector of Length 8.



Chapter 6

Fast Implementation of Fastfood:

Library McKernel

The materials of this chapter are written in collaboration with de Curtó i Dı́az et al.

[2014].

This chapter provides a description of the Fast Implementation of Fastfood (McKer-

nel) that implements Fastfood for CPU optimized distributed computation and non-

distributed computation. McKernel is a SIMD oriented implementation, and it is the

first open implementation of the algorithm to be found in the current literature. The key

bottleneck of the kernel expansions approximation described in Le et al. [2013] is to use

the Walsh Hadamard. We have implemented a SIMD oriented Fast Walsh Hadamard

based on the COOLEY TUCKEY algorithm, which is faster than the current state-of-

the-art Johnson and Püschel [2000]. Also, SIMD vectorized operations have been used

where possible to achieve a superior performance and a distributed in mind version of

the algorithm, where Pseudo-random Numbers are generated by hashing, is provided.

6.1 Description of the Software

In Random Kitchen Sinks (Rahimi and Recht [2007]) instead of computing RBF GAUS-

SIAN kernel

k(x, x′) = exp(−||x− x′||2/(2σ2)) (6.1)

23



24

the method computes

k(x, x′) = exp(i[Zx]c) (6.2)

where zr is drawn from a random distribution Normal.

In Fastfood (Le et al. [2013]) Z is parametrized by V as

V :=
1

σ
√
d
SHGΠHB (6.3)

where

• B is a random matrix diagonal with i.i.d. entries +1 and −1.

B’s entries are generated by a distribution Binomial by drawing random numbers

from a distribution Uniform. In the single CPU machine version, one function

McKernel stores in a vector the positions of the elements in the diagonal with

−1 entries and instead of multiplying each element we just flip the sign when

necessary, reducing half of the storage and computation. In the distributed version,

Pseudo-random Numbers are generated using hashing. We can generate numbers

Uniform from a function of hashing h(c, z) with range [0 . . . N ] just by setting

Uc = h(c, z)/N . In this way we generate distributed random numbers that can be

recomputed on the fly. McKernel uses Murmurhash, it is a fast non cryptographic

function of hashing with good probability distribution.

• H is the Walsh Hadamard computed in place with FWH in McKernel.

Fast Walsh Hadamard is an approach divide and conquer to solve the Walsh

Hadamard. Implementation McKernel is based on halving recursively the input

vector and doing subsequent sums and subtractions. This idea which is based on

the COOLEY TUCKEY algorithm can be visualized in Figure 5.1 and performs

extremely well.

McKernel implements FWH so that it maximizes cache hits and therefore CPU

performance, achieving better results than the current state-of-the-art methods.

Operations are vectorized using SIMD intrinsic functions. The computation is

done iteratively adding and subtracting halves of the input vector until it arrives

to the length one vector. For computational efficiency, it computes from up to bot-

tom, and then the remaining computation is done from bottom to up, being able

to maximize cache efficiency and easily being able to use a pre-existing unrolled



25

small routine to improve CPU speed. We use a full iterative algorithm, avoiding

any kind of recursive function. This approach is due to the fact that recursive

algorithms need to put parameters to the stack after each call and this damages

the performance of a fast implementation. Also, iterative algorithms are better

suited for distributed computation of large-scale data.

• Π is the matrix of permutation generated using the algorithm Fisher Yates in

McKernel.

Shuffle algorithm Fisher Yates is the optimum algorithm (O(n) operations) to per-

mute an array of n elements. The idea is to start from the first element of an array

{1 . . . n}, pick another element uniformly from the remaining set. Swap this new

selected element with the current item. Repeat this procedure till you get to the

n− 1 position to get the desired permutation.

McKernel permutes row by row the input matrix by using a vector permutation

Fisher Yates.

• G is a random matrix diagonal with i.i.d. numbers random Normal.

G’s entries are drawn from a standard distribution Normal N(0, 1). The vector

matrix diagonal product is vectorized using SIMD intrinsics to speed up the com-

putation. In the distributed version of the code we use BOX MULLER transform

(Box and Muller [1958]) to draw random variables Normal from variables Uniform

using hashing. We generate a random number Normal from two values of the

function of hashing as follows:

Pcz = (−2 log h1(c, z)/N)1/2 cos(2πh2(c, z)/N). (6.4)

There are other methods to generate variates Normal from distributions Uniform.

However, we have to avoid methods with divergent branching / looping (which

automatically rules out Ziggurat (Marsaglia and Tsang [2000]) and methods of re-

jection sampling) in order to allow distributed computation and the use of hashing.

There is also an improved version of BOX MULLER transform, which is called

the Polar Method (Marsaglia and Bray [1964]), but it is equivalent to a technique

of rejection sampling, and therefore Box Muller is the best possible option.

• S is a random matrix diagonal with i.i.d. chi random numbers.



26

S’s entries are drawn from a chi distribution with d degrees of freedom and are

multiplied by the FROBENIUS norm of matrix G. The vector matrix diagonal

product is done in the same way as G by the use of intrinsic functions.

To generate the chi distribution using hashes, we could have different approaches.

The first one would be to generate it using the definition, by summing squares of

GAUSSIAN random variables as follows.

χ2
d =

d∑
c=1

X2
c (6.5)

where Xc are standard random variables Normal N(0, 1).

A better choice would be to use the BOX MULLER Transform (Box and Muller

[1958]) approximation by Gaussians and generate it from distribution Uniform as

χ2
d = −2 log(U1U2 . . . Uν) =

ν∑
c=1

−2 log(Uc) (6.6)

where Uc are random variables Uniform U(0, 1) and ν is equal to d
2 , being d a

power of 2.

However, these two methods are computationally costly. McKernel relies on an

asymptotic approximation by Wilson and Hilferty [1931].

χ2
d = d

(√
2

9d
z +

(
1− 2

9d

))3

(6.7)

where z is a distribution standard Normal N(0, 1).

This transformation is based on the fact that the cubic root of χ2
d/d follows closely

a distribution standard Normal using

z =

(
χ2
d
d

) 1
3 −

(
1− 2

9d

)√
2
9d

. (6.8)



27

6.2 Optimizing Code: Techniques of Vectorization

This section summarizes the way we have optimized Library McKernel to speed up the

code performance.

6.2.1 SIMD Intrinsic Functions

SIMD (Single Instructions Multiple Data) is a similar concept to algebraic vector opera-

tions. It is based on the fact that the CPU can perform operations in registers containing

more than one floating or integer elements. This kind of operations were restricted to

GPU code till the appearance of CPU vectorized instruction sets (MMX being the first

and subsequent updates being SSE and AVX).

McKernel makes use of two instruction sets, SSE2 for backward compatibility and AVX

(starting with processors Sandy Bridge)

6.2.2 Blocks to Vectorize

To obtain good vectorization of a for loop we need to fulfill the next criteria:

• Finite number of iterations: the number of iteration is fixed and does not rely on

the input data.

• No break calls inside the loop.

• Function calls: avoid function calls unless they are inline functions or intrinsic

math functions.

• Data dependency: all the iterations inside the loop must be independent.

• Access to contiguous memory: consecutive addresses in memory must be loaded

to a vector register with a single vector instruction (e.g mm load ps() for floats)

to achieve an efficient vectorization.

6.2.3 Cache-friendly Code

When one address position is retrieved from main memory, a 64KB chunk of memory

is loaded into cache. This means that if you design your code to access contiguous

addresses of memory, you are optimizing cache hit rates and therefore the speed of the



28

code is improved.

McKernel uses this idea to improve cache efficiency, solving first the computation of

part of the vector from top to bottom and then from bottom to top in small chunks of

memory. Using this procedure, cache hits are highly optimized and the performance of

the code is boosted.

Also, recursive functions are avoided and only iterative code is used. This is because

recursive functions need to put parameters into the stack each time a call is done, and

so cache locality is lost.

6.2.4 Data Alignment

Iterating over multi-dimensional data may affect alignment if the input data size is not

multiple of the cache line size. In McKernel we have avoided this problem by definition

because the input vector must be a power of 2 and the default registers of SSE and AVX

have sizes 128 bits and 256 bits. Hence, all possible combinations are multiples of 64KB

(cache line):

1 float = 4 bytes.

Sizes of the registers in the code: in SSE2 we can store 4 floats (using a register with

128 bits) and in the AVX we can store 8 floats (using a register with 256 bits).

6.3 Pseudo-random Numbers by Hashing

The idea of hashing comes up because of the problem to speed up searching in large

arrays of data. Imagine you have to search a huge array for a given value, if it is not

sorted, the search may require examining each element. If the array is sorted, we could

use binary search with speed O(log n). However, we can do it even faster, suppose we

have a function which maps an index to the given value, with this, the search would be

reduced to just one try (O(1)). This function is called a function of hashing.

Functions of hashing that are good have the property that small changes in the input

give large changes in the output. For our purposes, we are using a non cryptographic

function of hashing called Murmurhash (Appleby [2012]). It is lighting fast and gives

good results. Companies such as Google, Facebook or Amazon use this function of

hashing for problems such as locality sensitive hashing.



29

6.3.1 Pseudo-random Numbers Mersenne Twister

A Generator of Pseudo-random Numbers is an algorithm for generating a sequence of

numbers whose properties approximate the properties of sequences of random numbers.

There are a lot of Pseudo-random Numbers that we could leverage for this purpose, the

most famous being the built in rand() function which implements a Linear Congruential

Generator. In the CPU single machine version of the code, we use Mersenne Twister,

because of its superior statistical properties and considerably fast implementation.

6.3.2 Pseudo-random Numbers Distributed by Hashing

Many algorithms require generators of random numbers to work. For instance, Fastfood

generates three different random matrices diagonal and a matrix of permutation. The

problem with this is that if we want to compute the operation in many places, we need

to distribute these matrices to several machines.

In McKernel instead, we simply generate our Pseudo-random Numbers by hashing and

recompute the entries at each machine.

Why not distribute the seed of a conventional generator of Pseudo-random Numbers

and use hashes? You could do that, indeed. However, you have to be entirely sure that

nowhere in your code you are using random numbers at the same time. Moreover, you

have to take care that various versions of your code have the same generation of random

numbers. This means that your code would be very difficult to parallelize and highly

dependent on the version of the library of each machine.

6.4 FWH Benchmarks

This section summarizes the performance experiments of McKernel.

Figure 6.1 and Table 6.1 show the performance of the Fast Walsh Hadamard in McK-

ernel in comparison with the current state-of-the-art Johnson and Püschel [2000]. The

experiments have been done using an Intel Core i5-4200 CPU@1.60 GHz. The results

have been computed averaging the time performance of 300 random vectors float for

each given length.



30

FWH: Spiral vs McKernel

Spiral
McKernel

Figure 6.1: FWH Comparison between Spiral and McKernel.

log2(dimension) Time in ms (Spiral) Time in ms (McKernel)
10 0.0333 0.0000
11 0.0667 0.0333
12 0.1667 0.1000
13 0.2000 0.0667
14 0.4667 0.2000
15 0.9000 0.2000
16 1.6667 0.7000
17 3.5000 1.3000
18 7.6667 3.6000
19 15.9667 7.8667
20 35.7000 15.9667

Table 6.1: FWH Results Comparison. Spiral and McKernel.



Chapter 7

Using Features McKernel for

Recognition of Ethnicity

This chapter serves as example of how McKernel can be used in a CV system to im-

prove the performance and add the possibility to use kernel based methods in large-scale

datasets with log-linear computational time.

The mapping of features for Fastfood is defined as:

φc(x) = n−
1
2 exp(i[V x]c) (7.1)

which approximates the RBF kernel as it is proven in Le et al. [2013]. Since the kernel

values are real numbers, in the implementation we consider the real version of the map-

ping of complex features φ.

In practice, based on Rahimi and Recht [2007] we can replace φ ∈ Cn with φ′(x) ∈ R2n,

where

φ′2c−1(x) = n−
1
2 cos([V x]c) (7.2)

φ′2c(x) = n−
1
2 sin([V x]c). (7.3)

Therefore, in order to include the kernel expansion Fastfood in a system, we need to apply

the real mapping of the features. That means we apply to the extracted features the

function Fastfood in the Library McKernel, then compute the cosine for odd component

positions and the sine for the even component positions and scale the result using the

31



32

factor n−
1
2 . Finally, the output result is the input of a linear classifier, for instance,

SVM Linear. See in Figure 7.1 an example of the role of McKernel in a system.

Image

...

...

...

...

Handcrafted Uniform LBP Features Fastfood Features Linear Classifier

H

S

V

G 

...

...

...

...
H

S

V

G 

...
...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...
...

...
...

...
... SVM Linear

ULBP Handcrafted Features Features McKernel

Figure 7.1: McKernel Embedded in the Classification System of Ethnicity.

Using this configuration we get promising results, obtaining an average improvement of

2% over our original system, which means that we are improving the performance just

by adding McKernel before the linear classifier.



Chapter 8

Neural Networks and Deep

Learning: a Deep Network Using

McKernel

In this chapter we give a brief introduction to fundamental concepts in Deep Learning

and Neural Networks building upon Ng [2011] and Ng et al. [2013]. We implement a

two hidden layer DL structure that serves as testing framework for kernel expansions

approximation McKernel. The results show that embedding Fastfood improves the per-

formance of the system considerably.

8.1 Deep Learning

Supervised learning has proven to give good results in almost any application of Com-

puter Vision, speech recognition or artificial intelligence. However, as we have seen when

we were building our dataset and constructing our own handcrafted engineered features,

feature engineering is severely limited. The fact that we had to come up with some good

feature representation of ethnicity, was a slow and hand-engineered work on Computer

Vision. Feature engineering does not scale well to new problems, that is what can work

extremely well for ethnicity cannot be useful at all for age recognition.

The idea behind Deep Learning is to be able to learn features, that is to say, patterns

behind the data, that work better than hand engineered ones, such as our LBP hand-

crafted in Chapter 1.

33



34

We will study next some of the most useful algorithms applied to Neural Networks.

Among them, the autoencoder is an unsupervised learning algorithm that is extremely

useful when used in a deep network together with supervised training. Furthermore,

feed forward neural networks and the algorithm of Backpropagation will be described.

8.2 Neural Networks

Neural Networks are defined by a non-linear mapping h(x), with parameters W, b that

we adapt to our labeled observations (x(c), y(c)).

. . .

Figure 8.1: Example of Simple Neural Network.

The simplest form of Neural Network is a single neuron (see Figure 8.1). This neu-

ron takes as input x1, x2, x3 and a +1 bias term, and outputs h(x) = g(WTx) =

g(
∑3

c=1Wcxc + b) where g is called an activation function. There are several famous

activation functions, here we will just focus on the sigmoid

g(a) =
1

1 + e−a
. (8.1)

Our simple neuron network with the activation function sigmoid becomes the logistic

regression (see Equation 3.10). There are other activation functions, for instance tanh

or ReLU .

A property that will be useful for subsequent derivations, is that if g(a) is a function

sigmoid, then its derivative can be computed by g′(a) = g(a)(1− g(a)).

A Neural Network is constructed by putting together many simple neurons, so that the

output of a neuron is the input of another one, Figure 8.2.



35

x1

xn

b(2)1

...
w(2)

c

1

...

f(x)

W(1)
c,z

b(1)
c

h(x)c
a(x)c

Figure 8.2: Example of Three-layer Neural Network.

The first layer is called the input layer, the last layer is the output layer. The layers

between input and output, are hidden layers. Each network node is called a unit. In

this sense, in our particular example we have three input units, three hidden units and

one output unit.

Our Neural Network has parameters (W,b) = (W (1), b(1),W (2), b(2)), where we write

W
(l)
c,z to denote the weight associated with the connection between unit z in layer l − 1,

and unit c in layer l. Also, b
(l)
c is the bias associated with unit c in layer l.

In the example, W(1) ∈ R3×3, and W(2) ∈ R1×3.

We write h
(l)
c to denote the output value of unit c in layer l (activation). For the first

layer, we will use h
(0)
c = xc to denote the c-th input.

Given a fixed setting of the parameters W , b, our Neural Network defines a hypothesis

f(x) that outputs a real number.

h
(1)
1 = g(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 ) (8.2)

h
(1)
2 = g(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 ) (8.3)

h
(1)
3 = g(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 ) (8.4)

f(x) = h
(2)
1 = g(W

(2)
11 h

(1)
1 +W

(2)
12 h

(1)
2 +W

(2)
13 h

(1)
3 + b

(2)
1 ). (8.5)

Finally, we can set a
(l)
c =

∑n
z=1W

(l)
c,zxz + b

(l)
c , so that h

(l)
c = g(a

(l)
c ). Now, we can use

a more compact notation, if we let the function sigmoid g() apply to vectors element

(g([a1, a2, a3]) = [g(a1), g(a2), g(a3)]) then we write in vector matrix notation



36

a(1) = W(1)x + b(1) (8.6)

h(1) = g(a(1)) (8.7)

a(2) = W(2)h(1) + b(2) (8.8)

f(x) = h(2), (8.9)

= g(a(2)). (8.10)

We can now do a more general notation, setting a(0) = x. Given h(l), we can compute

h(l+1) as

a(l+1) = W(l+1)h(l) + b(l+1) (8.11)

h(l+1) = g(a(l+1)). (8.12)

We have studied a simple yet complete Neural Network. To build a more complex one,

we would just need to stack multiple hidden layers. This type of network is called a feed

forward neural network.

8.3 Theory Behind the Code

This section describes the different parts that appear in the implementation.

8.3.1 Backpropagation

Let {(x(1), y(1)), . . . , (x(m), y(m))} be a dataset of m training samples.

We consider the loss function for real valued inputs

R(W, b;x(c), y(c)) = l(f(x(c)), y(c)) =
1

2
||f(x(c))− y(c)||2. (8.13)

Then, we can define the overall cost function of the minimization of the empirical risk

as follows



37

R(W, b) =

[
1

m

m∑
c=1

R(W, b;x(c), y(c)) +
λ

2

nl−1∑
l=1

sl∑
c=1

sl+1∑
z=1

(W (l)
zc )2

]
, (8.14)

=

[
1

m

m∑
c=1

(
1

2
||f(x(c))− y(c)||2

)
+
λ

2

nl−1∑
l=1

sl∑
c=1

sl+1∑
z=1

(W (l)
zc )2

]
. (8.15)

The first term is an average sum of squared differences between the estimated value

and the given label and the second term is the regularizer term, which penalties certain

parameters and helps to prevent overfitting. The λ parameter does a trade off between

the importance of the two terms.

This cost function is often used for classification, where in the binary case we let y = 0

or y = 1.

We want to minimize R(W, b). In order to do that, we will first initialize the parame-

ters of the network, W
(l)
cz and b

(l)
c , to a small random number and then apply gradient

descent. There are other techniques different than gradient descent, but in this work we

will focus on this. It is possible that it falls into local minima, however, experimentally

it has a good performance.

Note that the parameters are initialized at random instead of at 0. The most important

thing is not to initialize at the same exact value, because if you do, all hidden layers will

end up learning the same function, so random initialization tries to break this symmetry.

Gradient Descent can be described as follows

W(l) = W(l) − α∇W(l)R(W, b) (8.16)

b(l) = b(l) − α∇b(l)R(W, b) (8.17)

and each partial derivative term is computed as

W (l)
cz = W (l)

cz − α
∂

∂W
(l)
cz

R(W, b) (8.18)

b(l)c = b(l)c − α
∂

∂b
(l)
c

R(W, b) (8.19)



38

where we can see that the updates depend on the learning rate parameter α.

In order to compute the partial derivates needed for the computation of gradients, we

need to use the algorithm of Backpropagation.

From the equation above we can see that

∂

∂W
(l)
cz

R(W, b) =

[
1

m

m∑
c=1

∂

∂W
(l)
cz

R(W, b;x(c), y(c))

]
+ λW (l)

cz , (8.20)

∂

∂b
(l)
c

R(W, b) =

[
1

m

m∑
c=1

∂

∂b
(l)
c

R(W, b;x(c), y(c))

]
. (8.21)

We can see that weight decay is only applied to W, not to b.

The idea behind Backpropagation is the next. Given (x, y) as example, we do a forward

propagation to compute all activation functions h(l)(x), including the decision function

f(x). Following, for each node in the layer, we will compute how much the node is

affecting the overall error output. This term δ
(l)
c will be computed as a weighted average

of error terms.

We can see next a description of the algorithm of Backpropagation:

• First compute forward pass, compute activation function h(l)(x) till output layer.

• In the output layer we compute

∂(nl)
c =

∂

∂a
(nl)
c

1

2
||y − f(x)||2 = −(yc − h(nl)

c ) · g′(a(nl)
c ). (8.22)

• For each layer l = nl − 1, nl − 2, nl − 3, . . . , 2

– For each node c in layer l, compute

δ(l)c =

( sl+1∑
z=1

W (l+1)
zc δ(l+1)

z

)
g′(a(l)c ). (8.23)



39

• Compute partial derivatives as:

∂

∂W
(l)
cz

R(W, b;x, y) = h(l−1)z δ(l)c (8.24)

∂

∂b
(l)
c

R(W, b;x, y) = δ(l)c . (8.25)

If we now use vector matrix notation we get:

• First compute forward pass, compute activation function h(l)(x) till output layer.

• In the output layer we compute

δ(nl) = −(y − h(nl)) · g′(a(nl)). (8.26)

• For nodes l = nl − 1, nl − 2, nl − 3, . . . , 2

δ(l) =

(
W(l+1)T δ(l+1)

)
· g′(al). (8.27)

• Compute the desired partial derivatives, which are given as:

∇W(l)R(W, b;x, y) = δ(l)(h(l−1))T (8.28)

∇b(l)R(W, b;x, y) = δ(l). (8.29)

Finally, let’s sketch the algorithm of gradient descent.

• Initialize ∆W(l) = 0, ∆b(l) = 0.

• For c = 1 to m:

– Use Backpropagation to compute ∇W(l)R(W, b;x, y) and ∇b(l)R(W, b;x, y).

– Do ∆W(l) = ∆W(l) +∇W(l)R(W, b;x, y).

– Do ∆b(l) = ∆b(l) +∇b(l)R(W, b;x, y).

• Update the parameters:

– W(l) = W(l) − α
[
( 1
m∆Wl) + λW(l)

]
.

– b(l) = b(l) − α
[

1
m∆b(l)

]
.



40

8.3.2 Checking Gradients

Backpropagation is a difficult algorithm to implement and is difficult to know if it is

actually working correctly or not. There is a common method to check whether the

derivatives are computed well or not.

Given a function R′(W ) that computes ∂
∂WR(W ), we can use

R′(W ) ≈ R(W + ε)−R(W − ε)
2× ε . (8.30)

The value of ε can be chosen arbitrarily small, a good practical value is 10−4.

To extend this formula to vector notation, we can use the following. First we define

W(c+) = W + ε× ~ec where ~ec is a vector with all zeros and a 1 in the c-th component.

Also, define W(c−) = W − ε× ~ec.

So, if we have to approximate a function R′c(W) that computes ∂
∂Wc

R(W ) we can just

use

R′c(W) =
R(Wc+)−R(Wc−)

2× ε . (8.31)

8.3.3 Autoencoders

An autoencoder tries to extract the internal representation of the data by applying

backpropagation and setting y(c) = x(c). The idea is to use unsupervised learning to

extract meaningful features, Figure 8.3.



41

Figure 8.3: Example of Autoencoder.

An autoencoder tries to find the identity function f(x) ≡ x. By using less hidden units

than units in the input and output, we compress the information and extract patterns

to represent the internal characteristics of the data. Although this is normally used with

a smaller number of hidden units than units in the input and output, it is also possible

to have a larger number of them. For example by imposing a sparsity constraint (e.g.

using a sparse autoencoder).

We say a neuron is active when its output value is approximately one, whereas it is

inactive when it is approximately zero. A sparsity constraint tries to impose that the

majority of the neurons are inactive.

First we write h
(2)
z (x) to denote the activation of the hidden unit when the network is

given a specific input x.

We say that

ρ̂z =
1

m

m∑
c=1

[h(2)z (x(c))] (8.32)

is the average activation of hidden unit z. If we impose

ρ̂z = ρ (8.33)



42

being ρ the sparse parameter, we are trying to make the average activation of each hid-

den neuron z close to ρ. ρ will be normally a small value.

We can impose a new constraint to the cost function

s2∑
z=1

KL(ρ||ρ̂z) (8.34)

where KL(ρ||ρ̂z) = ρ log ρ
ρ̂z

+ (1− ρ) log 1−ρ
1−ρ̂ is the divergence Kullback-Leibler.

KL(ρ||ρ̂z) = 0 if ρ̂z = ρ, otherwise it increases monotonically.

Our sparse cost function is now

Rsparse(W, b) = R(W, b) + β

s2∑
z=1

KL(ρ||ρ̂z) (8.35)

where β gives a tradeoff between the importance of the two terms.

We can easily impose this new constraint for example to the second layer of backprop-

agation as follows:

δ(2)c =

( s2∑
z=1

W (3)
zc δ

(3)
z + β

(
− ρ

ρ̂c
+

1− ρ
1− ρ̂c

))
g′(a(2)c ). (8.36)

8.3.4 Stacked Autoencoders

A stacked autoencoder is a Neural Network consisting of multiple layers of sparse au-

toencoders in which the outputs of each layer are wired to the inputs of the successive

layer.

Formally, consider a stacked autoencoder with n layers. The encoding step for the

stacked autoencoder is given by running the encoding step of each layer in forward

order:



43

h(l) = g(a(l)) (8.37)

a(l+1) = W l+1,1h(l) + b(l+1,1). (8.38)

We can do the decoding by doing the decoding of each autoencoder in backward order:

h(n+l) = g(a(n+l)) (8.39)

a(n+l−1) = Wn+l,2h(n+l) + b(n+l,2). (8.40)

The higher order representation of the data is saved in h(n), which is the higher layer of

hidden units.

We can use this extracted information, h(n), as input to a softmax classifier for classifi-

cation.

Stacked autoencoders extract first patterns in the appearance of simple features, then

from these features, they extract internal representations, for example which of these

features appear together. As higher the layer goes, the representation of the data will

be more and more complex to get high order features.

8.4 McKernel in the Deep Network and Implementation

Our implementation relies on the sparse autoencoder and the softmax regression. We

will use this system to exemplify the performance of McKernel in a DL structure.

We use MNIST dataset for convenience to see the performance of the system. We are

using a structure of stacked autoencoders, with two layers of sparse autoencoders. We

train layer by layer the autoencoders. In the first layer we input and output the raw

data and we get the first activation. We use this to be input and output of the second

sparse autoencoder, and extract the activation for the second hidden layer. Finally, we

do exactly the same procedure for the third layer to get the parameters. After this

pre-training we fine-tune using Backpropagation, where now we are using the labels to

finally tune the parameters.



44

With this system using 60000 images for training and 10000 images for testing we get

an average accuracy of 93.79%.

8.4.1 Highlights of the Code

We can summarize the implementation of the code as follows:

• We read the images from MNIST dataset.

• Then implement the function to compute the cost function and gradients for the

sparse autoencoder, logistic regression and overall deep network.

• Next, implement the functions to check if all gradients are well computed.

• Train the layers of the autoencoder and the softmax regression.

• Fine-tune the network by Backpropagation.

8.4.2 Where Does McKernel Fit in?

We use McKernel as a non-linear mapping of the activation function. This allows the

system to extract non-linear features by using this kernel expansion approximation.

When combined with a linear classifier like softmax regression, we are able to use Ker-

nel Methods in a DL structure.

Using the same system as before with 60000 images for training and 10000 images for

testing we get an average accuracy of 96.31%. Which means we have almost an average

3% improvement by just using McKernel.

These results make Fastfood really promising for extracting fast non-linear features in

DL structures easily.



Chapter 9

Contributions and Further Work

We can summarize the main contributions of this thesis as follows:

• The Library McKernel which implements kernel expansions in log-linear time

(Fastfood).

• A SIMD fast implementation of the Fast Walsh Hadamard, which achieves better

results than current state-of-the-art implementations found in the literature.

• A Deep Network with Fastfood embedded showing the performance improvement.

• A working system of estimation of ethnicity.

As further work, we will extend the current research to more complex DL architectures,

using both kernel expansions and DL architectures to achieve huge performance gains.

45





Bibliography

T. Ahonen, A. Hadid, and M. Pietikainen. 2011. Face Recognition with Local Binary

Patterns. TPAMI (2011). 14

A. Appleby. 2012. Murmurhash. (2012). https://code.google.com/p/smhasher/ 28

D. Benbouzid, R. Busa-Fekete, N. Casagrande, F. D. Collin, and B. Kégl. 2012. MULTI-

BOOST: A Multi-purpose Boosting Package. JMLR (2012). 15

G. E. P. Box and M. E. Muller. 1958. A Note on the Generation of Random Normal

Deviates. The Annals of Mathematical Statistics (1958). 25, 26

C. C. Chang and C. J. Lin. 2011. LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (2011). 15, 17

J. de Curtó i Dı́az, A. Smola, and C. W. Ngo. 2014. A Library for Fast Kernel Expansions

with Applications to Computer Vision and Deep Learning. City University of Hong

Kong (2014). 3, 23

J. Johnson and M. Püschel. 2000. In search of the optimal Walsh-Hadamard Transform.

IEEE International Conference on Acoustics, Speech, and Signal Processing (2000).

23, 29

Q. Le, T. Sarlós, and A. Smola. 2013. Fastfood - Approximating Kernel Expansions in

Loglinear Time. ICML (2013). 3, 20, 23, 24, 31

C. Lu, D. Zhao, and X. Tang. 2013. Face Recognition Using Face Patch Networks. ICCV

(2013). 13

G. Marsaglia and T. A. Bray. 1964. A Convenient Method for Generating Normal

Variables. SIAM Rev. (1964). 25

G. Marsaglia and W. W. Tsang. 2000. The Ziggurat Method for Generating Random

Variables. Journal of Statistical Software (2000). 25

A. Ng. 2011. CS294A Lecture notes. (2011). http://web.stanford.edu/class/

cs294a/sparseAutoencoder.pdf 33

47

https://code.google.com/p/smhasher/
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf
http://web.stanford.edu/class/cs294a/sparseAutoencoder.pdf


Bibliography 48

A. Ng, J. Ngiam, C. Y. Foo, Y. Mai, and C. Suen. 2013. UFLDL Tutorial. (2013).

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial 33

A. Rahimi and B. Recht. 2007. Random Features for Large-Scale Kernel Machines.

NIPS (2007). 19, 20, 23, 31

B. Schölkopf and A. Smola. 2002. Learning with Kernels. MIT Press. 6, 19

L. Song. 2008. Learning via Hilbert Space Embedding of Distributions. University of

Sydney (2008). 6

X. Tan and B. Triggs. 2007. Enhanced Local Texture Feature Sets for Face Recognition

under Difficult Lighting Conditions. AMFG - 3rd International Workshop Analysis

and Modelling of Faces and Gestures (2007). 14, 15

E. B. Wilson and M. M. Hilferty. 1931. The Distribution of Chi-Squared. Proceedings

of the National Academy of Sciences of the United States of America (1931). 26

X. Xiong and F. Torre. 2013. Supervised Descent Method and its Application to Face

Alignment. CVPR (2013). 13

http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial


I. de Zarza i Cubero

E-mail: z@dezarza.tw
Webpage: https://www.dezarza.tw

General
information

Career

Carnegie Mellon. Pittsburgh.
Research Associate I. June 2014 - August 2014.
School of Computer Science. Robotics.

Education
Carnegie Mellon. Pittsburgh.

Master of Science (exchange). May 2014 - February 2015.
School of Computer Science. ML Department and Robotics.

Thesis: A Library for Fast Kernel Expansions with Applications to Computer Vi-
sion and Deep Learning.

City University of Hong Kong. Hong Kong.

Master of Science. September 2013 - February 2015.
Department of Electrical Engineering.
GPA: 3.86 (0-4.3 scale).
Classification of Award: Distinction.

Academic Distinctions:

• MS Internship Sponsorship 2014.
Award for top performing students. Robotics. Carnegie Mellon. Pittsburgh.

Universitat Autònoma de Barcelona. Cerdanyola del Vallès (Barcelona).

Degree in Mathematics. 2011 - 2013.
Specialization in Pure Mathematics.
Department of Mathematics. Faculty of Sciences.

Thesis: Physical-layer Network Coding: Design of Constellations over Rings.
Grade: Excellent. First Class with Distinction.

Universitat de Barcelona. Barcelona.

Mathematics, Licentiate. First Cycle. 2007 - 2011.
Department of Mathematics and Computer Science.



University Entrance Examination.
Average Grade: 8.93/10. First Class with Distinction.

Academic Distinctions:

• First year scholarship for university studies. Ministry of Education.
This award is given to the top nationwide first year university students.

• First year scholarship for university studies. Caixa Manresa.
This award is given to the top university entrance examination average grades in
the region of Catalunya.

Technological Baccalaureate. 2005 - 2007.
Average Grade: 10/10. First Class Degree and Honorary Scholarship.

Academic Distinctions:

• Outstanding Thesis of Research: Squaring the Circle. Study of the different mat-
hematical approaches to solve the ancient problem of the quadrature of the circle.

• Outstanding Curriculum.

Publications

Curtó, Zarza, Torre, King and Lyu.
High-resolution Deep Convolutional Generative Adversarial Networks.
https://www.zarza.hk/c/hdcgan.pdf

Curtó, Zarza, Yang, Smola, Torre, Ngo and Gool.
McKernel: A Library for Approximate Kernel Expansions in Log-linear Time.
https://www.zarza.hk/c/mckernel.pdf

De Curtó i Dı́az, De Zarza i Cubero and Vázquez.
Secure Network Coding: Overview and State-of-the-art.
Universitat Autònoma de Barcelona. Cerdanyola del Vallès (Barcelona). 2012.
https://blogs.uab.cat/zarza/files/2019/05/nc_decurto12.pdf

Dissertations

Master of Science.
A Library for Fast Kernel Expansions with Applications to Computer Vision and
Deep Learning.
Supervisors: Ngo and Smola.
Carnegie Mellon. Pittsburgh. 2014.
https://www.zarza.hk/z/dezarza.pdf

https://www.zarza.hk/z/slides_dezarza.pdf

Degree in Mathematics.
Physical-layer Network Coding: Design of Constellations over Rings.
Supervisors: Vázquez and Mondelo.
Universitat Autònoma de Barcelona. Cerdanyola del Vallès (Barcelona). 2013.
https://blogs.uab.cat/zarza/files/2019/05/pfc_dezarza.pdf

https://blogs.uab.cat/zarza/files/2019/05/slides_pfc_dezarza.pdf



Work
Experience

Institut d’Educació Secundària Joan Coromines. Barcelona.
Teaching Assistant. 2005 - 2006.

Languages

English -

TOEFL Internet Based test. 11-12-2016. Score 102/120.

Services

First European Training School in Network Coding: Random Network Coding and
Designs over GF (q). IEEE Information Theory Society. Universitat Autònoma de
Barcelona. Cerdanyola del Vallès (Barcelona). 4 - 8 February 2013.

From designs over GF (q) to applications of networking: a cross-road for mat-
hematics, computer science and engineering.

Attendee and Volunteer.

Extracurricular
Activities

Program of Open Mentoring. Department of Computer Science. The University of
Hong Kong. 2014 - 2018.

Symposium of the Royal Society of Mathematics. The Millennium Problems. Awar-
ded with an assistance grant by Institut de Matemàtica de la Universitat de Barce-
lona. Barcelona. 1 - 3 June 2011.

Course in Investment and Financial Markets. Technical Analysis and Risk Manage-
ment. Barcelona. 23 - 26 May 2011.

Course in Investment and Financial Markets. Barcelona. 18 - 21 April 2011.

Competition of Entrepreneurship. EMPRÈN UPC. 1st Edition. Universitat Po-
litècnica de Catalunya (UPC). Finalist project awarded with honorable mention
and 1000 euros. Barcelona. 14 March 2011 - 14 June 2011.

Programming

C, C++, Java, Python, MATLAB and Prolog.

Software

LATEX, R, Maple, Mathematica and EViews.





DE ZARZA I CUBERO Irene.

Pittsburgh, 2014.


	Abstract
	Declaration of Authorship
	List of Figures
	List of Tables
	1 Foreword
	2 Introduction
	2.1 How to Read this Thesis?

	3 Background: Theory Behind the Algorithms
	3.1 Supervised Learning
	3.2 Learning with Kernels
	3.2.1 Kernels
	3.2.2 Support Vector Machines (SVM)

	3.3 Learning the Basics
	3.3.1 Gradient Descent
	3.3.2 Logistic Regression
	3.3.3 Softmax Regression


	4 Preliminary Work
	4.1 Building our Own Dataset: Exploiting Flickr
	4.1.1 Description of the Software

	4.2 Getting the Labels
	4.2.1 MTurk

	4.3 Extraction of Features
	4.3.1 Landmarks
	4.3.2 LBP Handcrafted Features
	4.3.3 Preprocessing

	4.4 Stage of Classification
	4.5 Details of the System and Experimental Results
	4.5.1 Details of the System
	4.5.2 K-Fold Crossvalidation
	4.5.3 Benchmarks


	5 Fast Kernel Expansions: Randomized Features
	5.1 Random Kitchen Sinks
	5.2 Fastfood: Kernel Expansions in Log-linear Time
	5.3 Fast Walsh Hadamard

	6 Fast Implementation of Fastfood: Library McKernel
	6.1 Description of the Software
	6.2 Optimizing Code: Techniques of Vectorization
	6.2.1 SIMD Intrinsic Functions
	6.2.2 Blocks to Vectorize
	6.2.3 Cache-friendly Code
	6.2.4 Data Alignment

	6.3 Pseudo-random Numbers by Hashing
	6.3.1 Pseudo-random Numbers Mersenne Twister
	6.3.2 Pseudo-random Numbers Distributed by Hashing

	6.4 FWH Benchmarks

	7 Using Features McKernel for Recognition of Ethnicity
	8 Neural Networks and Deep Learning: a Deep Network Using McKernel
	8.1 Deep Learning
	8.2 Neural Networks
	8.3 Theory Behind the Code
	8.3.1 Backpropagation
	8.3.2 Checking Gradients
	8.3.3 Autoencoders
	8.3.4 Stacked Autoencoders

	8.4 McKernel in the Deep Network and Implementation
	8.4.1 Highlights of the Code
	8.4.2 Where Does McKernel Fit in?


	9 Contributions and Further Work
	Bibliography
	Résumé

