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Introduction

Description

• Time period: 26th May 2014 - 5th December 2014.

• Carnegie Mellon.

• Location: Pittsburgh (Pennsylvania).

• Office 8018. GATES HILLMAN Center.

• School of Computer Science.
ML Department.

• Supervisors: A. Smola and C. W. Ngo.
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Introduction

How It All Began?

• Starts as a summer internship at Carnegie Mellon.
• Working at the HS Laboratory in Computer Vision and

Machine Learning.

• Grows into a dissertation in the ML Department.
• Main focus: Fast Kernel Expansions and their efficient

implementation.

• What’s next? Deep Learning.
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Introduction

A Primer on Machine Learning and Computer Vision

The goal: solve the problem of estimation of ethnicity.

Setup:

• Dataset from Scratch: Images and Labels.

• Landmarks and Affine Transform.

• Extraction of Handcrafted Features.

• Classification.

• Crossvalidation.

• ML Tricks.
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C&Z Dataset from Scratch

API Weaknesses Exploitation in Flickr

• PYTHON code to retrieve URLs given a list of attributes.
Filtering by time, image quality and avoiding negative tags.

• MATLAB code to crawl massively images from the internet.

Cleaning the Data

• Extract faces.

• Label images using MTurk.

• MTurk labels to JSON format.

De Curtó i D́ıaz. 26th May - 5th December 2014. Master Thesis. 6 / 29



Introduction
C&Z

McKernel
Applications
Conclusions

Labeling the Images
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Affine Transform and Extraction of Landmarks

• Affine Transform and Normalization.

• Extract Landmark Points: 49 facial points.

Normalization, A�ne Transform and Mirroring

Extraction of Landmarks
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Feature Extraction

• ULBP Multiscale.
• HSV Color Space.
• 4th informative channel. Preprocessing of (Tan and Triggs

2007).
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Classification and Crossvalidation

Classifier
• SVM Linear: LIBSVM (Chang and Lin 2007).

Crossvalidation
• Choose 3 best radius.

• Choose patch size and number of neighbors.

• Choose appropriate SVM C parameter.

• Choose number of weak learners for AdaBoost.
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Classifier

Original Image

Folders

Landmark points

Normalized image

Labels (.json)

CSV

AMTurk

+

+

CSV
(path image, path landmark, label)

LBP

File format: SVMLight
(label, feature)

(patch size, R, N)

CLASSIFIER

model, results

(train.data, test.data)(weak learners)

CROSSVALIDATION

Accuracy

• Around 86% in our dataset.
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Fast Kernel Expansions

McKernel
• Motivation: use kernel methods in large-scale data.

• Based on Random Kitchen Sinks by (Rahimi and Recht 2007).

• Main idea: approximate a random matrix Gaussian by a
multiplication of random matrices diagonal.

• Why it speeds up the computation? Uses Hadamard, which
can be computed in O(n log n) time.
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Fast Kernel Expansions

Walsh Hadamard
• Can be computed using the Fast Walsh Hadamard (FWH).

• Algorithm Divide and Conquer that recursively halves the
input vector.
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McKernel

Writing Fast Numerical Code

• SIMD Intrinsics: SSE2, SSSE3 and AVX.

• Cache-friendly code.

• Loop unrolling.

__mm128 a = _mm_loadu_ps(&data[0]);

__mm128 b = _mm_loadu_ps(&data[4]);

__mm128 s = _mm_add_ps(a, b);

__mm128 d = _mm_sub_ps(a, b);

_mm_storeu_ps(s, &data[0]);

_mm_storeu_ps(d, &data[4]);
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McKernel

McKernel

In Random Kitchen Sinks instead of computing RBF GAUSSIAN Kernel

k(x , x ′) = exp(−||x − x ′||2/(2σ2)) (1)

the method computes

k(x , x ′) = exp(i [Zx ]c) (2)

where zc is drawn from a random distribution Normal.
Z is now parametrized by V as

V :=
1

σ
√
d
SHGΠHB. (3)
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McKernel

Fastfood

V :=
1

σ
√
d
SHGΠHB (4)

where

• B is a random matrix diagonal with i.i.d. entries +1 and −1.
• H is the matrix Walsh Hadamard computed in-place with FWH in McKernel.
• Π is the matrix of permutation generated using FISHER YATES algorithm in

McKernel.
• G is a random matrix diagonal with random numbers i.i.d. Normal.
• S is a random matrix diagonal with random numbers i.i.d. Chi.
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McKernel

FWH
• Iterative algorithm. It computes half of the vector going down in depth, and then it goes from

bottom to top solving iteratively the remaining computations.
• Recursions are avoided to decrease stack overhead and cache hits are maximized by using this

structure.
• SIMD Intel Intrinsics: SSE2 and SSSE3 using 128 bit registers and AVX using 256 bit registers.
• FWH at 1Gflop. Faster than current state-of-the art methods (Spiral).
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McKernel

Permutation by Fisher Yates

• Π can be generated with order O(n log n):
• Augmenting the integers 1, . . . , n with random keys, forming value key pairs

(r1, 1) · · · (rn, n).
• rz is a random number Uniform [0, 1].
• Sort these elements by key using an O(n log n) algorithm, for instance Quicksort.
• Discard the keys to get the permutation.

• Shuffle Fisher Yates: optimum (O(n)) algorithm to permute an array of n
elements.
• Start from the first element of an array {1 . . . n}.
• Pick another element uniformly from the remaining set.
• Swap this new selected element with the current item.
• Repeat this procedure till you get to the n − 1 position to obtain the desired

permutation.
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McKernel

Factory McKernel: Object Oriented Design

McKernel provides an API based on a factory, which is an object oriented paradigm where:

• Interface creates object.
• Subclass decides class to instantiate.

McKernel* mckernel =

FactoryMcKernel::createMcKernel(FactoryMcKernel::RBF,

data, nv, dn, sigma);

where we can use RBF or RBF MATÉRN:

• FactoryMcKernel::RBF
• FactoryMcKernel::MRBF

Each kernel contains methods:

• McFeatures() Computes V .
• McEvaluate() Computes the mapping of complex features.
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McKernel

Distributed Version
• Pseudo-random Numbers are generated using functions of hashing h(c , z) with

range [0 . . .N] just by setting Uc = h(c , z)/N.
• From these random numbers Uniform, we generate random numbers Normal using

BOX MULLER Transform (Box and Muller 1958)

Pcz = (−2 log h1(c , z)/N)1/2 cos(2πh2(c , z)/N). (5)

• and deviates Chi using the approximation of (Wilson and Hilferty 1931)

χ2
d = d

(√
2

9d
w +

(
1− 2

9d

))3

(6)

where w is a standard distribution Normal N(0, 1).

By using hashing we get Pseudo-random Numbers than can be generated on the fly!
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An Application of Computer Vision

The idea is to use McKernel before the linear classifier in our
system of estimation of ethnicity.
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An Application of Deep Learning

A Simple Neural Network

a(x) =
∑
c

wcxc + b = wTx + b (7)

h(x) = g(a(x)) = g

(∑
c

wcxc + b

)
(8)

where w are the connecting weights, b the neuron bias and g() the activation function.

x1 xn

b

1. . .

w1 wn
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Introduction to Deep Learning

Activation Function

g(a) = sigmoid(a) =
1

1 + e−a
. (9)

• Understand an artificial neuron as an estimator of p(y = 1|x), logistic regression
classifier.
• It works like this: if the output is greater than 0.5 the logistic regression outputs

class 1, otherwise it outputs class 0.
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Introduction to Deep Learning

Multi-layer Neural Network

a(k)(x) = W(k)h(k−1)(x) + b(k) (10)

h(k)(x) = g(ak(x)). (11)

Output layer:

h(L+1)(x) = o(a(L+1)(x)) = f(x). (12)

x1 xn 1. . .

1. . .
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c

1. . .
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c,z

W(1)
c,z

a(1)(x)c

h(1)(x)c

h(2)(x)c

a(2)(x)c

b(2)
c

W(3)
c,z b(3)

c

h(3)(x)c

a(3)(x)c
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Backpropagation

x
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• Each node has a function of forward propagation which
depends on children.

• Each node has a function of backward propagation which
depends on parent.
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Deep Neural Network

• Pretraining: initialize the parameters.
• Once all layers are pretrained, train the whole network using

supervised learning: fine-tuning.
• Forward propagation.
• Backward propagation.
• Update.
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Deep Neural Network McKernel

• Implementation of the Code: two-layer stacked autoencoder,
with sparse autoencoders as hidden layers.

• Autoencoder: makes the input equal to the output and
extracts features in the hidden layer f (x) ≡ x̂.

• We have embedded McKernel in a neural network as
non-linear mapping to the activation function.

• Improved performance of 3% just by wiring this kernel
expansion.
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Conclusions

Contributions
• SIMD FWH implementation faster than current

state-of-the-art methods.

• Library McKernel for Fast Kernel Expansions in Log-linear
Time.

• C&Z Dataset.

• Implementation from scratch of a system for estimation of
ethnicity, including the tools to crawl massively images from
the net.

• Implementation of a simple architecture of Deep Learning to
test our library of approximating kernel expansions, it is the
ground for future research.
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Thank You

DE CURTÓ I D́IAZ Joaquim.
Thank you.

Special thanks to all the people at the ML Department and Robotics that made this possible.
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