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Motivation

Explore the limitations of traditional Computer Vision.

Study novel techniques to accelerate learning in Large-scale
Machine Learning: Fast Kernel Expansions.

Implement a library fast and easy-to-use.

Supplement with applications to Computer Vision and Deep
Learning.
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C&Z Dataset

ional Computer Vision

Building our own dataset: exploiting Flickr.
Getting the labels: MTurk.

Extraction of features: LBP Handcrafted Features around
landmark facial points.

Step of preprocessing: gamma correction, filter DoG and
contrast equalization.

Classification: SVM Linear.

K-fold crossvalidation.
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C&Z Dataset
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C&Z Dataset

| Binary Patterns

Detect facial points using Supervised Descend (Xiong and Torre 2013) and
then extract LBP Features around them.

Select patch around landmark point and

for each pixel

Threshold Binary: 00010011
- ecimal: 19

LBP Multiscale
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C&Z Dataset

Binary Patterns

LBP Features:
LBP.
ULBP: less memory and computational time.

ULBP Multiscale: use of different radius to extract local and
global information.

Improvement in the performance using a step of
preprocessing.
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C&Z Dataset

ifier

AdaBoost.
AdaBoost

Taital uniform weight PO

on training examples

remeighed more heavdy § L

weak classifier 3 =i

i )
J

. @
Final classifier is weighte ..
Combinason ot wesk eiiers

H(x) = sign(a,hy,(x)+ a,h, (x) + a7y (x))

SVM Linear and Non-linear.
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C&Z Dataset

SVM Linear SVM Kernel

SVM.
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C&Z Dataset

Crossvalidation

Color space, LBP parameters (radius, neighbors, patch size) and
weak learners (AdaBoost).

Crossvalidation

[ validation Set

B Training Set

Round 1 Round 2 Round 3 Round 10

Validation

A . 93% 90% 91% 95%
ceuracy:

Final Accuracy = Average(Round 1,Round 2, ...)
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C&Z Dataset

Results

Color space RGB LUV YCrCb HSV
Accuracy (%) 77.4983 78.1971 78.2669 81.4116

Color Space K-Fold Crossvalidation Applied to Classification of Ethnicity.

Accuracy (%)

ULBP. SVM Linear. 77.71
ULBP Multiscale(3). SVM Linear. 78.27
ULBP Multiscale(3). SVM Linear. HSV. 81.42
ULBP Multiscale(3). SVM Linear. HSV. Preprocessing. 82.36
ULBP Multiscale(3). SVM Linear. HSV. Optimized preprocessing. 85.02

Experimental Results System of Ethnicity.
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C&Z Dataset

Drawbacks and Solutions

¢ SVM non-linear entangles high cost in training step.

¢ SVM is not recommended for large datasets ( > 50.000
instances).

® Use Random Features to leverage learned training parameters.
¢ (Le et al. 2013) propose Fastfood.
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Fast Kernel Expansions: Randomized Features

ernel Expansions: Randomized Features

In Random Kitchen Sinks instead of computing RBF GAUSSIAN
Kernel

k(x,x') = exp(—||x — x'[[?/(20?))
the method computes
k(x,x") = exp(i[ZX]c)

where z. is drawn from a random distribution normal.
In (Le et al. 2013) Z is parametrized by V as

V.= 75HG|_|HB
ovd
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Kernel

Characteristics

API following a design in factory.

Distributed-oriented version: Pseudo-random Numbers are
generated using hashing, no need to re-compute the matrices.

Optimized library: cache-friendly code, unrolled loops, SIMD
Intel Intrinsics for vectorized operations and in-place routines.
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1
" oVd

V.= SHGIHB

where
B entries 1 and —1.

H Walsh Hadamard. FWH maximizing cache hits and CPU
performance. SIMD Intel Intrinsics.
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Fast Kernel Expansions: Ranc

Defining the 1 x 1 Hadamard by the identity Hy = 1, then Ym > 0,
H,, is defined as:

H. — i <Hm—1 Hm—l )
™ \@ Hmfl *Hmfl
and for m > 1 we have

Hy=H & Hn—1.
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McKernel

I matrix of permutation using Fisher Yates (O(n)).

G entries follow distribution Normal N(0,1).
Distributed-oriented version: BOX MULLER Transform (Box
and Muller 1958)

P., = (—2log hi(c, z)/N)*? cos(2mha(c, z) / N).

S entries are random numbers Chi with d degrees of freedom.
Distributed version: approximation by (Wilson and Hilferty

1931)
2 2\\?3
Xg_d(\/wer(l_gd)) '
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McKernel

rks

The experiments have been done using an Intel Core i5-4200 CPU
© 1.60 GHz. The results have been computed averaging the time
performance of 300 random vectors float for each given length.

FWH: Spiral vs McKernel

Time inms

1 " 12 13 14 15 16 17 18 19 20
log2( dimersion )

Comparison between Spiral and McKernel.
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Applications

ation to Computer Vision

The mapping of features for McKernel is defined as:
be(x) = n2 exp(i[Vx]e).
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|
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McKernel Embedded in a System for Classification of Ethnicity.
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Applications

plication to Deep Learning

Extract the internal representation of the data by applying
backpropagation and setting y(;) = X(z)-

@y —>
To —>
g —>

Ty —>

Stacked Autoencoders: Multiple Layers of Sparse Autoencoders.
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Multi-layer Neural Network.
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Applications

ations to Deep Learning

Highlights of the Code:
MNIST Loading.

Implemented function to compute the risk and gradients for
the sparse autoencoder, logistic regression and overall deep
network.

Implemented functions to check gradients are well computed.
Train layers of the autoencoder and softmax regression.

Fine-tune the network by backpropagation.
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Applications

ere Does McKernel Fit in?

We use McKernel as a non-linear mapping to the activation
function.

MNIST average accuracy 96.31 %.

3 % improvement just by wiring McKernel.

Additional gain by enlarging the number of kernel expansions.
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Conclusions

clusions

C&Z Dataset.

SIMD FWH that performs better than current state-of-the-art
libraries (Spiral).

Fast implementation of approximate kernel expansions.
Library McKernel.

McKernel embedded in a system for estimation of ethnicity.

McKernel wired in Deep Learning.
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Conclusions
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