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Abstract

Growth is a fundamental process in the natural world. However, there are
many different forms of growth when quantified, analyzed, and modeled in
mathematics. This dissertation seeks to parse several common models of
mathematical growth, including linear, exponential, logarithmic, combinato-
rial, sigmoid (S-Shaped), and fractal growth processes. We will look at real
world examples, as well as examine the outcomes of growth processes.
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Chapter 1

Introduction

A scoffer seeks wisdom and does not find it, But knowledge is
easy to him who understands. - Proverbs 14:6

1.1 Contexts

This thesis is the culmination of my intellectual journey so far.

I started college as a humanities major. While I enjoyed those courses, I
realized the cycle of reading books and writing essays was not the best use
of my time.

While I excelled at math in grade school and high school, calculus was the
stopping point. I thought I was done with calculus given how many math
courses I already did.

But to balance my curriculum, I took math courses with incredible professors.
Going through MATH31H opened my eyes to what math could do. Ideas that
seemed unrelated suddenly came together. I realized that math is incredibly
diverse. Connections between fields are much more fluid than one assumes.
For example, probability theory is directly related to calculus, which doesn’t
make sense on surface.
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Right before the pandemic sent everyone home, I declared to be a math
major. Twelve math courses and five semesters later, I am writing this thesis
on mathematical growth. Switching major in the middle of my college life
and turbo-charging through the electives was a lot of work. It has not been
an easy journey by any means, but everything appears easy in hindsight.

This is partly why I’m fascinated by the idea of growth. In hindsight things
change so much, but you don’t feel that way when they are happening.

My pivot came with a lot of work and frustration, but it actually prompted
me to learn more about interesting things on my own. My interests in his-
tory and human nature expanded naturally to economics and sociology, as I
felt more confident in parsing statistics and technical writing (though often
they are too dry to bother). Meanwhile, my background in math led me
to appreciate computer science and natural sciences. In addition, spending
many hours during lockdown pushed me to dig deeper into music, art, and
writing.

And mathematics connected the dots behind the scenes for all these interests.

They converge on the theory of growth in different contexts. On the macro
side, growth includes the universe, the biosphere, the economy, society and
culture. On the micro side growth includes the human mind, faith, perfor-
mance and of course, personal growth.

The interesting thing is how we perceive growth in a dualist sense. We are
taught and trained to measure growth quantitatively, yet the most striking
observations are mostly qualitative. It speaks volumes about the narrative
animals us humans are.

A big part of my learning experience is understanding the difference between
what we do know and what we don’t but feel like we do. Writing this disser-
tation feels exactly like that.

Understanding growth is important. Growth is present in all walks of life.
Growth happens in the world whether we measure it or not, because time
exists and growth is simply the result of time interacting with everything
else. In a philosophical sense, growth indicates progress, something akin to
our civilization’s undertaking.
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Not to belabor the point, but mathematics carries an inherent beauty and
growth is one way to demonstrate that. Of course, understanding growth is
also highly practical, as this exposition seeks to address. For example, my
journey is also one of growth.

As Charlie Munger says, learn the big ideas from each discipline and find
the connections between them to build a ”lattice of mental models”. He
cannot be more correct. There is an intellectual beauty that invigorates the
mind when connections are made between seemingly unrelated ideas. The
cosmic forces seem to converge. At the same time, the opportunity cost of
not doing that is simply too high. There is no reason to leave sound and
valuable insights and wisdom on the table. When you consider the value of
basic arithmetic in our daily life, it seems too much a price to pay for people
who don’t understand basic calculations well.

My goal is to uncover the mathematics behind different types of growth and
see how they work mathematically, in real life, and with one another to an
extent.

1.2 Structure

What is growth? How does it work? Why does it matter? These are the
main questions to explore in this dissertation.

While things are so different, the theory of growth somehow connects the rise
in GDP per capita to the massive improvement in computing speed. Such
tangible growth is relevant to us as much as the intangible growth we often
examine with a philosophical lens.

Vaclav Smil defines growth as, ”a function of time ... [with] trajectories
in countless graphs with time usually plotted on the abscissa (horizontal or
x axis) and the growing variable measured on the ordinate (vertical or y
axis).” It captures the quantitative aspects succinctly, mainly that of change
of variable(s) in comparison to another variable (usually time and usually
singular). [22]
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I define growth in a simple manner: growth is change over time in quantita-
tive and qualitative manners.

It is possible to trace growth in more than two dimensions at a time, but
it is not for the faint of hearts. Human cognition is mostly limited to two-
dimensional spaces.

Growth is generally understood with two (time and measurable output).
Time is the near-universal component of any growth phenomena and growth
function.

Of course, time is not always the measuring stick. One can also measure
growth by comparing changes in other such as a two-dimensional plot of
height and weight. However, time exists in those variables implicitly as
well and deciphering these relationships without considering time are much
harder.

We will cover the following six types of growth at different lengths:

1. Linear growth

2. Exponential growth

3. Logarithmic growth

4. Combinatorial growth

5. Sigmoid growth

6. Fractal growth

The one sentence description (growth over time) for each goes like this.
Linear growth changes by the same amount per time unit. Exponential
growth changes by the same proportion per time unit. Logarithmic growth
is the inverse of exponential growth, or one over said proportion. Combinato-
rial growth changes by an exponentially increasing base and an accelerating
growth rate per time unit. Sigmoid growth involves exponential growth, but
with an upper bound. Fractal growth changes dimensionality.
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We are most familiar with linear growth and exponential growth, but we
already don’t understand a lot much about exponential growth to do with
calculus. The other growth types are also important, though they are much
less explained or taught.

In each chapter I will define one growth type, explain how it works and
explore its applications. Each chapter includes definitions, properties, and
visualizations.

While each chapter is standalone, I also hope readers can gain a cumulative
(hence growing) understanding on mathematical growth. If one reads this,
finds it interesting, and feels confident to apply a few ideas in their daily life
or has an epiphany on how X or Y works, then I will consider my job well
done. I wrote this for myself, but I hope others may find this interesting in
some way.

After exploring the six types of growth, I will explore some common patterns
of growth and their outcomes, which involve statistics and probability theory.
This chapter covers things relating to normal distribution and asymmetrical
distribution, including important properties, and real world examples. The
appendix will include a longer proof.

1.3 Progress

By the nature of the scope, this thesis requires a breadth of literature, ranging
from books to articles to even Youtube videos.

Vaclav Smil’s book Growth is the foundation of this inquiry. [22] Geof-
frey West’s book Scale gives a good primer on exponential and logarithmic
growth. [26]

For each chapter, there are also primary articles that offer technical details
and insights, in addition to the books mentioned above. I will also make
use of secondary resources to present real world applications, nuance behind
the mathematical models, and everything in-between. To honor the liberal
arts fashion, I aim for this thesis to be as multi-disciplinary and generalist

5



and general public facing as possible, while maintaining its firm roots in
mathematics and logical writing.

The topic warrants a breadth of literature and sources ranging from books
to articles to even YouTube videos and interactive online lessons. As I come
across things over time, I will add them organically (yet another demonstra-
tion of growth, this time specifically for this project).

Initially I wanted to write about growth due to Vaclav Smil’s Growth and
Geoffrey West’s Scale. The former gives a broad overview of growth in various
parts of the real world, from biology to machines to even cities and economies.
The latter is a great primer on exponential and logarithmic growth and the
math that connects seemingly unrelated phenomena.

Each chapter includes articles that offer technical details and insights in
addition to the books mentioned above. I will also make use of secondary
resources to present real world applications, nuance behind the mathematical
models, and everything in-between. To honor the liberal arts fashion, I aim
for this thesis to be as multi-disciplinary and public-facing as possible, while
maintaining its firm roots in mathematics and logical writing. Anyone who
knows high school math concepts well should have no problem reading this
if they skip the more technical portions.

While previous version of the introduction include a roadmap with due dates,
it’s way past that stage now. Instead, I want to expand on how I proceed to
write this dissertation. I read interesting and relevant materials, write out
the main ideas, let my mind process the information on the backburner, and
fill out the details later. Then it’s followed with rewrites, heavy edits, and a
repeat of the cycle.

Writing this is another prime example of growth. From the initial stump
and not knowing where to start to now cranking words and insights out at
a high speed, the last year has been a blessing in my writing career. While
academic writing early in college stunted my growth, my natural interests are
slowly taking over my writing chops. Both quantity and quality are rapidly
improving, surely the best type of growth trajectory!

After finishing this dissertation, I plan to write a series of explainer posts
on the mathematics and findings. It won’t just stop there, since there is
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an entire life ahead of graduation. I intend this project to play a role in
lifelong learning and a life well lived. Alas, that is the remanents of a former
humanities student. . .
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Chapter 2

Linear Growth

Remember this: Whoever sows sparingly will also reap spar-
ingly, and whoever sows generously will also reap generously. - 2
Corinthians 9:6

2.1 Linear Growth

2.1.1 Definitions

Linear growth is the most intuitive to understand, thus we will only cover it
briefly. Usage of linear equations goes back thousands of years, even though
proper development in linear algebra didn’t happen until the seventeenth
century.

The most common form of a linear function is written as:

y = mx+ b (2.1)

where m is the slope, or a constant value per unit of change in x, and b is
the intercept (or y-intercept), which is the initial value..
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The two parameters m and b are fixed and the two variables x and y are well,
variable. They depend on the two parameters. When x = 0, y = mx + b
becomes y = b.

x is known as an input variable and y is known as an output variable. Gen-
erally, we change the values of x to get different values of y. Of course, we
can revert the process and manipulate values of y to get values of x we want.
When y is written as f(x) or something equivalent, y is also known as a
function.

We can rewrite this equation as

Nt = N0 + kt (2.2)

, where k is the slope, N0 is the intercept, t is the input variable x and Nt is
the output variable y at time t.

This form is less abstract then the usual algebraic form learned in high school
algebra courses and connects the four ”things” together.

Linear growth is an increase in quantity over time when the rate of change
(slope) stays the same and the output grows by the same amount for each
unit of time (or any input variable). We can work backwards with linear
functions: as long as we know three of the four components, we can easily
calculate the missing one.

2.1.2 Applications

There are numerous examples of linear growth. I will only mention two
lesser-known but equally intriguing examples.

Linear Regression Linear regression is an important topic in statistics.
It examines the relationship between explanatory variable(s) and a response
variable. For example, we want to find the relationship between age and
height. Simple linear regression has one explanatory variable and one re-
sponse variable. Multiple linear regression has multiple explanatory vari-
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ables. Linear regression can show us the connection (correlation) between
variables and also give us some prediction power.

Rocks Stalagmites are rocks formed in caves due to drippings from the
cave ceilings. They grow in a linear fashion over a long time period, often in
units of millennia. [22]

One interesting observation is even if the absolute growth of a stalagmite
is the same over time, its growth rate slows down. For example, assume a
growth rate of 1 mm/year and an initial height of 1000 mm. This stalagmite
will grow 1000 mm in a thousand years to 2000 = 1000 + 1000 · 1 mm. In
the first year, the growth rate is 1

1000
= 0.1%, but one thousand years later,

the growth rate is now 1
2000

= 0.05%, half of the starting point.
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Chapter 3

Exponential Growth

So Jesus said to them, “Because of your unbelief; for assuredly,
I say to you, if you have faith as a mustard seed, you will say to
this mountain, ‘Move from here to there,’ and it will move; and
nothing will be impossible for you.” - Matthew 17:20

3.1 Contexts

I’ve known exponential growth for a long time. I heard the quote “compound
interest is the eighth wonder of the universe” as a child, though I had o
idea what compound interest or x-th wonder meant. When I learned about
exponential function in algebra, this quote made a bit more sense.

I didn’t grasp the power of exponential growth until high school, when I
started to read extensively about investing. Being a Warren Buffett fan, I
naturally came across the idea of compounding. I learned about the rule of
72, doubling time, and all the arithmetic tricks for doing these calculations
in my head. It is still fun to do.

And that led to my exploration of exponential growth in economics.

China’s GDP post-1979 grew eighty-two-fold in 41 years, which comes down
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to a 11.4% compounded annual growth rate (CAGR). Four decades of sus-
tained growth produced such drastic gains for China, while the US grew at
5.2% during the same time for an eight-fold growth. A little more than dou-
ble the US growth rate allowed China’s GDP to grow 10 times more than
the US GDP in terms of proportional changes!

This explains the catching-up of China’s GDP to the United States, as noted
in the graph below, courtesy of the World Bank. [2]

Figure 3.1: GDP growth of China and Unites States, 1960 - 2020

3.2 Exponentiation

3.2.1 Introduction

Exponentiation is an extension of multiplication.

Let’s start with the number 2. 2 ·1 = 2. 2 ·2 = 4. 2 ·2 ·2 = 8. 2 ·2 ·2 ·2 = 16.
These results all share a common 2, which we call the base. We can rewrite
this with an exponent, or how many times the base multiplies by itself.
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For now, let’s keep the exponent as a positive integer because negative expo-
nents or non-integer exponents are less straightforward to understand from
a multiplication point-of-view.

We write an exponent as a superscript and call the expression “base-b raised
to the nth power”, n being the exponent’s value. Two specific exponen-
tial powers are squares for 22 and cubes for 23. People have used them in
geometry for millennia.

Let’s rewrite the four numbers. 2 = 21.4 = 2 · 2 = 22.8 = 2 · 2 · 2 = 23.16 =
2 · 2 · 2 · 2 = 24. The pattern is each successive number is twice the earlier
number, but its exponent only increases by 1. This is hardly surprising, since
this is the definition of an exponent.

Exponentiation is important to calculating and measuring growth for this
exact reason. Assume a steady growth rate, when each round yields the
same percentage growth, we can shorten the expression with exponentiation.

There are two common forms of writing exponentiation. The first is like the
example above, bn, where b is the base and n is the exponent. One can easily
adapt the algebraic notation to other forms such as ax, bx, xn, and so forth.

The other common way is called exponential function, based on Euler’s num-
ber e. In fact, this is the default form when working with exponential func-
tions. This is commonly written as

f(x) = ex (3.1)

.

It can also be written as f(x) = exp(x). Euler’s number is e = exp(1).

3.2.2 History

To understand Euler’s number, we must look at the history of exponentiation.

Ancient Greeks already made use of exponentiation called amplification, from
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Euclid to Archimedes. For the longest time, mathematicians used different
notations and names for the concept of exponentiation. German mathemati-
cian Michael Stifel coined the word ”exponent” in Arithmetica Integra in
1544.

Several mathematicians drove significant progress in the field of exponential
functions. [22] In 1683 Jacob Bernoulli found the expression for continuous
compound interest to be

lim
n→∞

(1 +
1

n
)n (3.2)

.

This means the value continues to grow as n increases. A plot of such in-
creasing values is below. One can see as n increases, the value gets increasing
close to 2.7. Indeed, the approximate value of e will eventually converge to
around 2.718.

Figure 3.2: An approximation of Bernoulli’s expression
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Calculus is closely related to exponential functions and the discovery of the
number e. Leonhard Euler was instrumental in the development of the ex-
ponential function. He first defined the exponential function ex = expx as

lim
n→∞

(1 +
x

n
)n (3.3)

.

He also defined Euler’s number as

e = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · (3.4)

when x = 1 in ex.

Euler established the precedence for non-integer exponents to exist. He wrote
in 1748 that

consider exponentials or powers in which the exponent itself is a
variable. It is clear that quantities of this kind are not algebraic
functions, since in those the exponents must be constant.”

Euler’s number is special for many reasons. It is the base of natural log-
arithms (subject in the next chapter). It is the limit for (1 + 1

n
)n as n

approaches infinity. It is the sum of the infinite series Euler defined above

e =
∞∑
n=0

1

n!
(3.5)

.

Euler’s number and exponential function is also unique in that its derivative
is itself. There are more properties to Euler’s number and the exponential
function, Eli Maor wrote an entire book about e.
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3.2.3 Definition

Exponential growth is an increase in quantity over time when the rate of
change is proportional to the quantity itself. Exponential growth in the
opposite direction is called exponential decay.

The difference between exponential growth and linear growth is the linear
rate of change stays the same in absolute terms and the exponential rate of
change stays the same in proportional terms.

There are two exponential growth functions covered in this chapter. The
first type is based on discrete variables, or variables that can be counted. An
example is a six-face dice with six numbers.

Nt = N0(1 + r)t (3.6)

refers to exponential growth over discrete intervals, such as t = 1, 2, 3, . . . .

For example, a 1000-dollar bank account with a 1% annual interest rate will
become 1010 dollars at end of the year. The interest next year is based on the
1010 dollars, instead of the the 1000 dollars from the start. It is also possible
to add more to the base during the process, such as additional deposits into
a retirement account when the original investment is already growing. The
new added amount will now join the growth.

The second type of exponential growth function is based on continuous vari-
ables, or those that cannot be easily counted. An example is all real numbers,
since you can continue to write 3, 3.01, 3.001, . . .

Nt = N0e
rt (3.7)

refers to continuous exponential growth.

The difference between the two types of exponential growth is illustrated
below by two functions Nt = 1.1t and Nt = e0.1t, both growing at a 10 %
rate. As expected, the continuous growth function Nt = e0.1t grows slightly
faster than the discrete growth function Nt = 1.1t.
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Figure 3.3: Discrete versus continuous exponential growth

There are four parameters for exponential growth functions three input vari-
ables and one output variable. Changing any of the inputs can drastically
change the output.

The first parameter is the initial quantity N0, or the input.

The second parameter is time t. Time can be any unit interval, usually
ranging from seconds to years.

The third parameter is growth rate r, usually written in decimal form.

We can also calculate (1+ r)t directly to derive “how many times or percent
will the initial amount grow to at end of time t?”.

The last parameter is end quantity at time t Nt, or the output.

Similar to linear growth, Nt in exponential functions can be calculated both
forwards and backwards. To calculate the compounded growth rate, we
need to know the other three parameters and vice versa. The most common
calculation is for compounded annually growth rate (CAGR), commonly used
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in business and finance:

CAGR = (
Nt

N0

)(1/t) − 1 (3.8)

.

We first derive the amount of growth from beginning period 0 to the ending
period t, then raise it to its inverted power, which squares it how ever many
times. This leaves us with a multiplier, so to get the growth percentage, we
subtract 1 or 100%.

So the calculations for the GDP examples in the beginning of the chapter
are as follows: China GDP growth = (147200/1780)(1/41) − 1 = 11.36% and
US GDP growth = (209400/26270)(1/41) − 1 = 5.19%.

3.2.4 Properties

There are several key properties of exponents with base b and exponent power
x.

Zero b0 = 1 for any b.

Negative b−x = 1
bx

and bx = 1
b−x for for any integer x and non-zero base b.

Product of powers bx · by = bx+y. For example 23 · 25 = 23+5 = 28.

Quotient of powers bx

by
= bx−y. For example 34

32
= 34−2 = 32.

Power of power (bx)y = bx·y = bxy. For example (52)4 = 52·4 = 58.

Power of product (b · a)x = bx · ax. For example (7 · 4)5 = 75 · 45.
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Power of quotient ( b
a
)x = bx

ax
. For example (7

2
)3 = 73

23
.

3.2.5 Bases

There are a few widely-used bases in exponentiation.

Powers of 10. In the base-ten or decimal number system used today, pow-
ers of 10 are extremely common and written as 1 followed by number of zeroes
indicated by the exponent (negative exponents move in the other direction,
where zeroes precede the 1). 100 = 1.101 = 10.102 = 100.103 = 1000 and so
forth. Inversely, 10( − 1) = 0.1.10( − 2) = 0.01 and so on.

Scientific notation. This is written as 10x and is used to denote numbers
large and small. It’s a standard way to standardize numbers from very dif-
ferent sizes. For example, the speed of light is 299792458 m/s, or roughly
3 ∗ 108m/s.

Orders of magnitude. An order of magnitude is a difference of 1 in the
base-10 exponent, or a difference of 10 times. For example, 1000 is an order
of magnitude larger than 100.

Powers of 2. The first few negative powers of 2 is common used. 2−1 = 1
2

and 2−2 = 1
4
. and so on. They are also called half, quarter, etc. Base 2 is

the foundation to computer science, since 2n denotes the number of possible
values of a n-bit binary number (0 or 1).

Power of 1. Any powers of 1 is one, so 1n = 1. The first power of any
number is the number itself, so n1 = n.

19



Power of 0. If exponent n is positive (n > 0), then 0n = 0. If exponent
n is negative (n < 0), then 0n is undefined, since it’s the same as 1

0−n or 1
0
.

The value of 00 is under debate.

Power of -1. If n is an even integer, then (−1)n = 1, since (−1)2 = 1 and
all even integers are multiples of 2. If n is an odd integer, then (−1)n = −1.
This property is often used in induction proofs.

3.2.6 Distribution of Growth Rates

Below is a table of exponential powers for the first ten integers. Each suc-
cessive cell in each row is a multiple of the previous cell.

n n2 n3 n4 n5 n6

1 1 1 1 1 1
2 4 8 64 512 262144
3 9 27 729 19683 387420489
4 16 64 4096 262144 68719476736
5 25 125 15625 1953125 3814697265625
6 36 216 46656 10077696 101559956668416
7 49 343 117649 40353607 1628413597910450
8 64 512 262144 134217728 18014398509482000
9 81 729 531441 387420489 150094635296999000
10 100 1000 1000000 1000000000 1000000000000000000

Interestingly, each column displays an exponential decay in growth rate. For
example, in the column of n3, the initial growth is from 1 to 8, then to 27.
The growth rate decreases from 700% to 237.5% percent. From 27 to 64, the
growth rate slows down to 137%.

The obvious reason in this exponential decay is because 1n = 1 for all n,
while 2 raised to a large power can become very big, so the growth rate from
1 to 2n is 2n itself. If we don’t account for the guaranteed initial spike and
start with base 2, going from 2n to 2n+1 will still demonstrate decelerating
growth rate like the plot below.
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Figure 3.4: Decreasing growth in exponential functions with regards to bases

3.3 Compounding and Doubling Time

3.3.1 History

Compound interest is adding new interest to the combination of existing
principal (amount originally borrowed) and existing interest. It is different
from a simple interest, which pays the same amount of interest for every time
period. The act of adding more than the same amount is called compounding.
Compound interest grows exponentially.

There are two types of compound interests, namely discrete Nt = N0(1 + r)t

and the continuous Nt = N0e
rt.

The Florentine merchant Francesco Balducci Pegolotti included a compound
interest table in his book Pratica della mercatura in the 14th century. It
details the interests on a 100 lire loan from 1 percent to 8 percent in half-
percent increments for 20 years. [17]
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Mathematician Richard Witt wrote the first book entirely about compound
interest called Arithmeticall Questions in 1610. It included tables and clear
explanations on how to calculate with different compounding rates and var-
ious use cases. [13]

And as mentioned before, mathematician Jacob Bernoulli discovered the
number e in 1683 by studying compound interest, which led to the formal-
ization of exponential growth. [22]

3.3.2 Doubling Time and Rule of 72

Doubling time is the amount of time it takes to double in size or quantity.
When the growth rate is constant, the growth itself is exponential.

Note variable growth rates can still lead to doubling, but the time needed
will be unpredictable, unlike exponential growth.

The Rule of 72 is an arithmetic rule used to estimate doubling time in con-
junction with compound interest mechanism. TSuch rules are used out of
convenience.

Italian mathematician Luca Pacioli (whose major achievement includes double-
entry accounting and introducing Arabic numerals to Europe) mentioned the
Rule of 72 in his book Summa de Arithmetica in 1494. He suggested that to
estimate the doubling time of an investment, simply divide the interest rate
in as percentages by 72 to derive the appropriate time period. Given his lack
of detailed explanation, the rule was presumably widely used at the time. [3]

In wanting to know of any capital, at a given yearly percentage, in
how many years it will double adding the interest to the capital,
keep as a rule [the number] 72 in mind, which you will always
divide by the interest, and what results, in that many years it
will be doubled. Example: When the interest is 6 percent per
year, I say that one divides 72 by 6; 12 results, and in 12 years
the capital will be doubled.
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The doubling time td is defined as follows:

td =
ln(2)

ln(1 + r)
(3.9)

,

where r is the growth rate in decimal form.

It can be easily calculated from Nt = N0(1+r)t and Nt = N0e
rt using natural

logarithms. Since our desired quantity is twice the original amount, Nt will
be 2 and N0 will be 1 in this case.

Set 2 = 1 · (1 + r)td . Now 2 = (1 + r)td . ln(2) = td · ln(1 + r). td =
ln(2)

ln(1+r)
.

Set 2 = 1 · ertd . Now ln(2) = r · td. td = ln(2)
r

.

This leads to the rule of 72, because ln(2) ≈ 0.69. In addition, there is the
Rule of 70, Rule of 69.3. The Rule of 72 is most widely used because it
shares many divisors (1,2,3,4,6,8,9,12), making it the easiest to do mental
arithmetic with, especially when compounding is discrete. Note the answer
is a rough estimate, but it is close enough.

The table below compares three simple doubling time rules and an adjust-
ment rule. The most accurate simple rule is in bold.

The Rule of 70 and Rule of 69.3 are more accurate at lower growth rates.
The Rule of 72 is the most accurate from 5 percent and onward, but becomes
less accurate from the real doubling time at higher growth rates.

Note if the compounding is continuous instead of the discrete, then the Rule
of 69.3 and 70 are more accurate than 72 because ln(2) ≈ 0.693.

The 72-adjusted rule improves the doubling time estimation, which adjusts
the value 72 beyond 8% growth rate. For every 3% increase, the value (de-
nominator) increases by 1%.

t ≈ 72 + (r − 8)/3

r
(3.10)
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.

This simplifies to t ≈ 208
3r

+ 1
3
where 208/3 ≈ 69.3.

Rate Actual Years Rule of 72 Rule of 70 Rule of 69.3 72 adjusted
0.25 277.61 288.00 280.00 277.20 277.67
0.50 138.98 144.00 140.00 138.60 139.00
0.75 92.77 96.00 93.33 92.40 92.78
1.00 69.66 72.00 70.00 69.30 69.67
2.00 35.00 36.00 35.00 34.65 35.00
3.00 23.45 24.00 23.33 23.10 23.44
4.00 17.67 18.00 17.50 17.33 17.67
5.00 14.21 14.40 14.00 13.86 14.20
6.00 11.90 12.00 11.67 11.55 11.89
7.00 10.24 10.29 10.00 9.90 10.24
8.00 9.01 9.00 8.75 8.66 9.00
9.00 8.04 8.00 7.78 7.70 8.04
10.00 7.27 7.20 7.00 6.93 7.27
11.00 6.64 6.55 6.36 6.30 6.64
12.00 6.12 6.00 5.83 5.78 6.11
13.00 5.67 5.54 5.38 5.33 5.67
14.00 5.29 5.14 5.00 4.95 5.29
15.00 4.96 4.80 4.67 4.62 4.96
16.00 4.67 4.50 4.38 4.33 4.67
17.00 4.41 4.24 4.12 4.08 4.41
18.00 4.19 4.00 3.89 3.85 4.19
19.00 3.98 3.79 3.68 3.65 3.98
20.00 3.80 3.60 3.50 3.47 3.80
25.00 3.11 2.88 2.80 2.77 3.11
30.00 2.64 2.40 2.33 2.31 2.64
40.00 2.06 1.80 1.75 1.73 2.07
50.00 1.71 1.44 1.40 1.39 1.72
60.00 1.47 1.20 1.17 1.16 1.49
70.00 1.31 1.03 1.00 0.99 1.32

24



3.3.3 Connection to X-fold growth

We can easily derive tripling time, quadrupling time, and so forth. Simply
calculate t = ln(X)

ln(1+r)
where X is the desired amount (positive non-integers

allowed) and r is the growth rate in decimal form.

The table below shows the time to grow X-fold under 1% to 10% growth rate.
As the growth rate increases per column, the growth time required goes down
naturally. As the end target increases in columns, the growth time required
at any specific rate goes up, but that growth rate is decreasing.

rate 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold
1.00 69.66 110.41 139.32 161.75 180.07 195.56 208.98 220.82 231.41
2.00 35.00 55.48 70.01 81.27 90.48 98.27 105.01 110.96 116.28
3.00 23.45 37.17 46.90 54.45 60.62 65.83 70.35 74.33 77.90
4.00 17.67 28.01 35.35 41.04 45.68 49.61 53.02 56.02 58.71
5.00 14.21 22.52 28.41 32.99 36.72 39.88 42.62 45.03 47.19
6.00 11.90 18.85 23.79 27.62 30.75 33.40 35.69 37.71 39.52
7.00 10.24 16.24 20.49 23.79 26.48 28.76 30.73 32.48 34.03
8.00 9.01 14.27 18.01 20.91 23.28 25.28 27.02 28.55 29.92
9.00 8.04 12.75 16.09 18.68 20.79 22.58 24.13 25.50 26.72
10.00 7.27 11.53 14.55 16.89 18.80 20.42 21.82 23.05 24.16
20.00 3.80 6.03 7.60 8.83 9.83 10.67 11.41 12.05 12.63
30.00 2.64 4.19 5.28 6.13 6.83 7.42 7.93 8.37 8.78
40.00 2.06 3.27 4.12 4.78 5.33 5.78 6.18 6.53 6.84
50.00 1.71 2.71 3.42 3.97 4.42 4.80 5.13 5.42 5.68
60.00 1.47 2.34 2.95 3.42 3.81 4.14 4.42 4.67 4.90
70.00 1.31 2.07 2.61 3.03 3.38 3.67 3.92 4.14 4.34

3.3.4 Exponential Decay and Half-Life

Exponential decay is the opposite of exponential growth. Simply put, the
amount decreases by the same proportion during every time period.

The formula is
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Nt = N0e
−rt (3.11)

where −r is the decay rate and assume r is positive.

Exponential decay is widely used in sciences, especially physics and chem-
istry. A specific type of exponential decay is half-life, or t1/2. It is the inverse
of doubling time, or the time it takes for the amount to decrease by half.

If we set 0.5 = e−rt, then t = ln(0.5)
−r

is the half-life for decay constant r. r is
often written as γ in textbooks, but I write it as r for clarity.

3.4 Applications

Exponential growth can be applied to many areas, including economics, per-
sonal finance and more.

3.4.1 Inflation

Inflation is one of the most straightforward applications of exponential growth,
as well as one of the most relevant to us.

Inflation is the general increase in prices of goods and services. It is not a
stranger, yet we don’t often understand the mathematics behind inflation.

Simply put, when the price of something goes up, the same amount of money
buys less of that something. Suppose ten dollars can buy ten bananas at one
dollar each. In an economy with 10% inflation, each banana now costs 1.1
dollar, so you can only buy nine bananas with the ten dollars. We can say the
price has gone up, but we can also say our purchasing power has decreased.

The main metric to measure inflation in the U.S. is the Consumer Price Index
(CPI), calculated by the U.S. Bureau of Labor Statistics since 1913. It is a
broad metric that explains how fast are prices increasing for various goods
and services American consumers usually need.
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Each successive year’s index divided by the previous year’s gives us the in-
flation in percentage change. The price level of 1981 grows in proportion to
that of 1980 and so on.

Below is the inflation rate since 1913, with the detailed table at the end of
the chapter. [14]

Figure 3.5: Inflation rates from 1913 - 2021

The graph reveals four things. One, inflation rates vary a lot. The spikes
indicate huge price increases, which generally mean the economy is not doing
so well. Prices change faster than income, so any quick increase spells various
issues for the economy.

Two, inflation rates are mostly positive, except the dips between 1920 and
1940 and the tiny -0.4% in 2009, corresponding to the post World War I
economic depression, the Great Depression, and the Great Recession of 2008.

Three, given the definition of average inflation rate, some prices have in-
creased a lot more than the average and some have increased slower. For
example, healthcare costs has increased much faster by food prices.

Four, even though the inflation rates vary a lot, the underlying index has
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steadily marched upward with very occasional trending downwards. Volatil-
ity in the relative sense does not stop increase in the absolute sense, thanks
to arithmetic.

While inflation rate varies from two-digits in the 1970s and early 1980s (an
era known as stagflation) to low single-digits today (until 2020 at least), the
law of exponential growth means the price level keeps rising. The annual
average graph below captures the general rise in price level over the last
century, courtesy of the Minneapolis Federal Reserve. [14]

Figure 3.6: Inflation index change 1913 - 2021

From 1913 to 2021 (108 years) the annual average has grown 271.0
9.9

= 2737%,
which is an incredible amount. Yet the compounding annual inflation rate is
a mere (27.37)

1
108 − 1 = 3.11%.

Take a more recent look at the last forty years, the CPI has grown 271.0
90.9

=
298%. Prices have generally increased three times in four decades, which
means some things are more than three times as expensive in 2021 than in
1981. This is all due to a mere (2.98)

1
40 − 1 = 2.77% compounded annual

inflation rate.
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During my life time (circa 1999), the CPI has grown 271.0
166.6

= 163% with a

(1.63)
1
22 − 1 = 2.24% compounded annual inflation rate.

Perhaps a graph is more illustrative of the erosive power of inflation than
any words. Below is the declining purchasing power since 1913, calculated
using the inverse of inflation rate. It is a classic illustration of exponential
decay.

Figure 3.7: Declining purchasing power 1913 - 2021

One dollar from 1913 is only worth 2.56% of its original amount in 2021.
One dollar from 1981 is worth 32.32% of its original amount. And during my
lifetime, one dollar from 1999 is worth 60.58% of its original amount. That
means around 40% of my purchasing power since birth has been robbed by
inflation!

Exponential growth is ruthless and we are surely losing money every year due
to price increases. Hence, keeping all of our money as cash is actually not a
smart financial decision. Having enough savings is important, but we must
make good use of extra savings to grow (at least preserve) its purchasing
power. This leads to another application of exponential growth in the stock
market.
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3.4.2 Berkshire Hathaway

Berkshire Hathaway is one of the largest public corporations in the world. It
owns a diverse set of businesses such as insurance companies (e.g. GEICO),
famous brands (e.g. Fruit of the Loom and Dairy Queen), utilities, large
industries (e.g. BNSF railroad), and my favorite See’s Candies.

But it is most famous for its CEO and chairman Warren Buffett. Since he
took control of the company in the 1960s, Buffett and his business partner
vice chairman Charlie Munger have completely transformed the company
from a failing textile manufacturer into one of the most successful companies
in the world.

Each year Warren Buffett writes a letter to the company shareholders with
the first page detailing the performance of the company stock from 1965 to
2021. I updated the stock data up to April 1, 2022. [6]

Figure 3.8: Market value change of Berkshire Hathaway 1965 - 2022

Once again, it looks ”messy” similar to the inflation annual change graph.
However,the y-axis is very different. In the inflation chart the maximum rate
is 20%, but here 150% is the max, which means 20% is highly probable. In
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fact, 29 of the 58 recorded years have a gain more than 20%, 18 years have
a mild positive gain, and only 11 years have a negative gain. When you
visualize the actual performance of the stock price over the last six decades,
the results look staggering.

Note, this performance is in comparison to the S&P 500 index with its annual
dividends reinvested, which is a form of exponential growth as well.

Figure 3.9: Berkshire Hathaway vs S&P 500 index with reinvested dividends

One, the scale of the y-axis once again. To show any sort of growth in this
graph, one has to grow more than 1000 times or 1000000%, which is one-tenth
of the first major tick at 10000 times or 10000000%.

Two, the blue line, which is the performance of the S&P 500 500 index with
dividends invested (meaning it grows faster than the index itself), seems to
be flat. In reality, it is not and grew 284-fold! This means one dollar from
1965 will turn into a nice 284 dollars in April 2022, not bad at all. But
in comparison to Berkshire’s monstrous 41448-fold gain, the S&P 500 500
performance is only 284

41448
= 0.68% of that potential growth!

To truly compare the growth, we have to log-transform the y-axis to see
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that the S&P 500 500 index has also grown quite well (more on logarithmic
growth in the next chapter). Each tick is 10 times of the previous one, so the
red endpoint is more than 100 times that of the blue endpoints. Once again,
this is difficult to intuitively understand due to our perception bias when it
comes to exponential and logarithmic growth.

Figure 3.10: Berkshire Hathaway vs S&P 500 index in log

Three, the annual change graph shows rather low performance over the last
decade compared to previous decades (often near or above 100% growth),
yet after 2010 the stock has still performed well, growing over four-fold. This
is all due to high single-digit and low double-digit growth.

Four, following the previous observation, the last ten years have added three
times of the gains of the previous four decades. This is a key property of
exponential growth. A small relative increase in the later stage is often larger
than all of the previous gains combined due to the now incredibly large base.

What is behind this crazy growth from a multi-million dollar company to
one worth more than 700 billion today? Mathematically, the power of com-
pounding and exponential growth. The business side, however, is a lot more
complicated and deserves much more analysis. Buffett, Munger, and Berk-
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shire employees have made major decisions correctly, not waste money, and
diligently re-invest profits into growing the business.

For the Berkshire shareholders who have held company stock for many years,
they are probably smiling left to right. However, let’s not forget the difficulty
to find such a maverick business, which is little to impossible.

3.4.3 S&P 500 500 Index

After discussing the almost miraculous growth of Berkshire Hathaway, now
let’s look at the growth of the S&P 500 500 index that Berkshire trounced.
Turns out, it’s not doing too bad either. In fact, consensus says this is the
best way for most Americans to invest their savings.

The S&P 500 500 index tracks the performance of America’s largest 500
companies. It essentially represents Corporate America as a whole at its
most profitable and strongest level.

Indeed, The S&P 500 index is a benchmark metric for the entire U.S. and
global stock market. Once again, these ups and downs still produce incredible
return over the last five decades.

The following three charts are in similar format to Berkshire Hathaway: an-
nual change, performance over time, and performance log-transformed. We
see an EKG-like graph with high volatility.

One can see many more instances of decline in comparison to Berkshire Hath-
away. This is expected given the S&P 500 index is comprised of five hundred
companies, whose stock prices rise and fall all the time. It is the more fre-
quent declines that stop the compounding from happening. Similarly, the
log-transformed graph doesn’t say as much as the previous one.

And it is this principle of reversion to the mean that makes the S&P 500
performance pale in comparison to Berkshire Hathaway.

As Matthew 20:16 says:
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Figure 3.11: Annual change in S&P 500 index 1965 - 2021

Figure 3.12: S&P 500 index 1965 - 2021
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Figure 3.13: S&P 500 index 1965 - 2021 in log

”the last shall be first and the first shall be last.”

When a good year (positive gain) is more or less offset by negative gains,
then the exponential growth cannot really take off.

The following two graphs are the S&P 500 index performances over nine
decades, since its existence. It is more dramatic in terms of the log-transformed
graph, but in the grand scheme of things such drama fades out.

What appears lackluster may still be surprising. We know that if one invests
and re-invests dividends every year, then one dollar one dollar from 1965 will
turn into 284 dollars in April 2022. Why is that?

This is once again the power of compounding. Since the dividend rate is
positive every year, it actually enhances the index performance. A few per-
centage points of improvement actually leads to dramatic improvement over
a long time period, as the next example will illustrate.

35



Figure 3.14: S&P 500 index 1920 - 2021 in log

Figure 3.15: S&P 500 index 1920 - 2021 in log
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3.4.4 Relentless Arithmetic

Yet it’s this exact S&P 500 Index that can help millions of people achieve
financial security. Even if its performance isn’t that great in comparison to
blockbuster companies, it is actually the most manageable and achievable
goal. After all, index funds are designed to be held for a long time (e.g. for
retirement) and carry little to no hassles and fees.

John Bogle, the founder of Vanguard and a pioneer father of index funds,
wrote extensively on the benefits and logic behind index-fund investing. He
wrote that the biggest reason behind why indexing works it the ”relentless-
ness of the humble arithmetic”. In essence, exponential growth!

He makes clear one very important lesson to exponential growth: a few
percentage points make a huge difference given enough time. This is the
exact answer to the S&P 500 index versus its re-invested version question.

Bogle lists a few major sources of the percentage difference: inflation, lagging
performance of active fund managers, fees, and taxes. Let’s see how these
friction-like forces affect long-term growth. [4]

Assume an initial 1000 dollar investment growing at a steady rate (only
achievable in the long-run), how would the results fare each decade?

In the first decade, the results are already different. At a 10% rate, the end
result is 2358 dollars, when it is only 1551 dollars for a 5% growth rate. The
difference is 2358−1551

1551
= 52% for the 5% option! But that is only the start.

At the end of the second decade, the results are truly different. Whereas the
10% rate yields 6116 dollars, the 5% rate only produces 2527 dollars. This
is a difference of 6116−2527

2527
= 142% for the 5% option!

Notice also how in ten years the amount for 10% more than doubled? This
happens to every growth rate greater or equal to 7% due to the rule of 72.
In fact, it will keep going for every decade. You can see for the 7% growth
rate, every decade it roughly doubles.

Now at the end of the fourth decade (when people enter retirement if they
start investing in their twenties), the results couldn’t be more different.
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Figure 3.16: 10 year growth results from 5% to 10%

Figure 3.17: 20 year growth results from 5% to 10%
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Figure 3.18: 40 year growth results from 5% to 10%

Whereas the 10% rate yields 41144 dollars, the 5% rate only produces 6705
dollars. This is a difference of 41144−6705

6705
= 514% for the 5% option!

The 10% option has taken off in comparison to everyone else. It is double
that of 8% at the end of forty years. Yes, a mere 2% difference in growth
rate can mean twice as much difference in the result. Since the long-term
inflation rate since 1999 is slightly above 2%? That’s right, this inflation
will eat away half of your deserved wealth in forty years, without you doing
anything. And that is if inflation can stay low for this entire time, which
hasn’t always been the case.

There are many more things to unpack here, but given the charts and data,
readers can infer.

Now let’s look at a more realistic scenario. It is unlikely one will invest once
and then wait for decades. Periodic addition is much more likely, for example
through one’s retirement accounts. Let’s calculate the power of performance
drag here as well.

Assume an addition of 6000 dollars each year for 40 years, which is the
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maximum contribution to one’s Roth IRA account. This is already a tax-
free account, so it’s at least one less friction to worry about.

Figure 3.19: 40 year growth results from 5% to 10% with periodic additions

The difference is huge. The 10% scenario yields close to 3 million dollars,
whereas the 5% option produces only above 700000 dollars. But it is a four-
time difference versus the five-time previously. The gap is smaller this time.
The periodic addition gave the 5% option some room to catch up on, but
not by much.

However, note the absolute difference between the last two scenarios. Even
the losers here are still way larger than the winner before, which implies
the importance of consistency. No matter the growth rate, keep adding will
increase the chance of greater return, which is only natural.

Another way of examining the effect of compounding drag is to look at the
loss ratio, or how much you have ”lost” in comparison to the original 10%
benchmark.

We can see that even with a 1% friction, after forty years one-quarter of your
deserved wealth is gone. For 3%, more than half. For the unfortunate 5%,
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three-quarters!

Figure 3.20: Loss ratios in 40 years

If this relatively simple arithmetic is still not enough motivation for young
people to start saving and investing as early as possible, then I’m not sure
what will.

But not all hope is lost. As shown by the period addition example, even
at a lower investment return, consistent effort pays off. The 5% option still
returned more than 700000 dollars after forty years, which isn’t a trivial
amount. And this is only based on a six-thousand-dollar annual addition,
which is surely going to increase as one grows older and earns more.

At the same time, the 5% return isn’t entirely crazy either, since the long-
term stock market index return is around 7% according to Bogle and 10.24%
including re-invested dividends. So if we aim for the low bar and do our fair
share, the rewards are still bountiful. But if you can improve your annual
return even by a percent or two, the end results will be very different. A
19.66% growth rate over 56 years produced a 4144833% return for Berkshire
Hathaway.
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3.5 Inflation Data

Year Annual Inflation
1914 10 1.30
1915 10.1 0.90
1916 10.9 7.70
1917 12.8 17.80
1918 15 17.30
1919 17.3 15.20
1920 20 15.60
1921 17.9 -10.90
1922 16.8 -6.20
1923 17.1 1.80
1924 17.1 0.40
1925 17.5 2.40
1926 17.7 0.90
1927 17.4 -1.90
1928 17.2 -1.20
1929 17.2 0.00
1930 16.7 -2.70
1931 15.2 -8.90
1932 13.6 -10.30
1933 12.9 -5.20
1934 13.4 3.50
1935 13.7 2.60
1936 13.9 1.00
1937 14.4 3.70
1938 14.1 -2.00
1939 13.9 -1.30
1940 14 0.70
1941 14.7 5.10
1942 16.3 10.90
1943 17.3 6.00
1944 17.6 1.60
1945 18 2.30
1946 19.5 8.50
1947 22.3 14.40
1948 24 7.70
1949 23.8 -1.00

Year Annual Inflation
1950 24.1 1.10
1951 26 7.90
1952 26.6 2.30
1953 26.8 0.80
1954 26.9 0.30
1955 26.8 -0.30
1956 27.2 1.50
1957 28.1 3.30
1958 28.9 2.70
1959 29.2 1.08
1960 29.6 1.50
1961 29.9 1.10
1962 30.3 1.20
1963 30.6 1.20
1964 31 1.30
1965 31.5 1.60
1966 32.5 3.00
1967 33.4 2.80
1968 34.8 4.30
1969 36.7 5.50
1970 38.8 5.80
1971 40.5 4.30
1972 41.8 3.30
1973 44.4 6.20
1974 49.3 11.10
1975 53.8 9.10
1976 56.9 5.70
1977 60.6 6.50
1978 65.2 7.60
1979 72.6 11.30
1980 82.4 13.50
1981 90.9 10.30
1982 96.5 6.10
1983 99.6 3.20
1984 103.9 4.30
1985 107.6 3.50

Year Annual Inflation
1986 109.6 1.90
1987 113.6 3.70
1988 118.3 4.10
1989 124 4.80
1990 130.7 5.40
1991 136.2 4.20
1992 140.3 3.00
1993 144.5 3.00
1994 148.2 2.60
1995 152.4 2.80
1996 156.9 2.90
1997 160.5 2.30
1998 163 1.60
1999 166.6 2.20
2000 172.2 3.40
2001 177.1 2.80
2002 179.9 1.60
2003 184 2.30
2004 188.9 2.70
2005 195.3 3.40
2006 201.6 3.20
2007 207.3 2.90
2008 215.3 3.80
2009 214.5 -0.40
2010 218.1 1.60
2011 224.9 3.20
2012 229.6 2.10
2013 233 1.50
2014 236.7 1.60
2015 237 0.10
2016 240 1.30
2017 245.1 2.10
2018 251.1 2.40
2019 255.7 1.80
2020 258.8 1.20
2021 271.4 4.80
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3.6 Berkshire Hathaway Data

Year Per-Share Value S&P 500
1965 49.5 10
1966 -3.4 -11.7
1967 13.3 30.9
1968 77.8 11
1969 19.4 -8.4
1970 -4.6 3.9
1971 80.5 14.6
1972 8.1 18.9
1973 -2.5 -14.8
1974 48.7 -26.4
1975 2.5 37.2
1976 129.3 23.6
1977 46.8 -7.4
1978 14.5 6.4
1979 102.5 18.2
1980 32.8 32.3
1981 31.8 -5
1982 38.4 21.4
1983 69 22.4
1984 -2.7 6.1
1985 93.7 31.6
1986 14.2 18.6
1987 4.6 5.1
1988 59.3 16.6
1989 84.6 31.7
1990 -23.1 -3.1
1991 35.6 30.5
1992 29.8 7.6
1993 38.9 10.1
1994 25 1.3

Year Per-Share Value S&P 500
1995 57.4 37.6
1996 6.2 23
1997 34.9 33.4
1998 52.2 28.6
1999 -19.9 21
2000 26.6 -9.1
2001 6.5 -11.9
2002 -3.8 -22.1
2003 15.8 28.7
2004 4.3 10.9
2005 0.8 4.9
2006 24.1 15.8
2007 28.7 5.5
2008 -31.8 -37
2009 2.7 26.5
2010 21.4 15.1
2011 -4.7 2.1
2012 16.8 16
2013 32.7 32.4
2014 27 13.7
2015 -12.5 1.4
2016 23.4 12
2017 21.9 21.8
2018 2.8 -4.4
2019 11 31.5
2020 2.4 18.4
2021 29.6 28.7
2022* 14.1 -4.5
CAGR 19.66 10.2
Overall 4,144,800 28,485
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3.7 Humble Arithmetic Data

Year 10% 9% 8% 7% 6% 5%
1 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0
2 1100.0 1090.0 1080.0 1070.0 1060.0 1050.0
3 1210.0 1188.1 1166.4 1144.9 1123.6 1102.5
4 1331.0 1295.0 1259.7 1225.0 1191.0 1157.6
5 1464.1 1411.6 1360.5 1310.8 1262.5 1215.5
6 1610.5 1538.6 1469.3 1402.6 1338.2 1276.3
7 1771.6 1677.1 1586.9 1500.7 1418.5 1340.1
8 1948.7 1828.0 1713.8 1605.8 1503.6 1407.1
9 2143.6 1992.6 1850.9 1718.2 1593.8 1477.5
10 2357.9 2171.9 1999.0 1838.5 1689.5 1551.3
11 2593.7 2367.4 2158.9 1967.2 1790.8 1628.9
12 2853.1 2580.4 2331.6 2104.9 1898.3 1710.3
13 3138.4 2812.7 2518.2 2252.2 2012.2 1795.9
14 3452.3 3065.8 2719.6 2409.8 2132.9 1885.6
15 3797.5 3341.7 2937.2 2578.5 2260.9 1979.9
16 4177.2 3642.5 3172.2 2759.0 2396.6 2078.9
17 4595.0 3970.3 3425.9 2952.2 2540.4 2182.9
18 5054.5 4327.6 3700.0 3158.8 2692.8 2292.0
19 5559.9 4717.1 3996.0 3379.9 2854.3 2406.6
20 6115.9 5141.7 4315.7 3616.5 3025.6 2527.0
21 6727.5 5604.4 4661.0 3869.7 3207.1 2653.3
22 7400.2 6108.8 5033.8 4140.6 3399.6 2786.0
23 8140.3 6658.6 5436.5 4430.4 3603.5 2925.3
24 8954.3 7257.9 5871.5 4740.5 3819.7 3071.5
25 9849.7 7911.1 6341.2 5072.4 4048.9 3225.1
26 10834.7 8623.1 6848.5 5427.4 4291.9 3386.4
27 11918.2 9399.2 7396.4 5807.4 4549.4 3555.7
28 13110.0 10245.1 7988.1 6213.9 4822.3 3733.5
29 14421.0 11167.1 8627.1 6648.8 5111.7 3920.1
30 15863.1 12172.2 9317.3 7114.3 5418.4 4116.1
31 17449.4 13267.7 10062.7 7612.3 5743.5 4321.9
32 19194.3 14461.8 10867.7 8145.1 6088.1 4538.0
33 21113.8 15763.3 11737.1 8715.3 6453.4 4764.9
34 23225.2 17182.0 12676.0 9325.3 6840.6 5003.2
35 25547.7 18728.4 13690.1 9978.1 7251.0 5253.3
36 28102.4 20414.0 14785.3 10676.6 7686.1 5516.0
37 30912.7 22251.2 15968.2 11423.9 8147.3 5791.8
38 34003.9 24253.8 17245.6 12223.6 8636.1 6081.4
39 37404.3 26436.7 18625.3 13079.3 9154.3 6385.5
40 41144.8 28816.0 20115.3 13994.8 9703.5 6704.8
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Chapter 4

Logarithmic Growth

Again he said, “What shall we say the kingdom of God is like, or
what parable shall we use to describe it? It is like a mustard seed,
which is the smallest of all seeds on earth. Yet when planted, it
grows and becomes the largest of all garden plants, with such big
branches that the birds can perch in its shade. - Mark 4:30 - 32

4.1 Logarithms

4.1.1 Definition

The logarithm is the inverse to exponentiation. It involves two parts, a base
b and a given number x. It is written as logb(x) with the base specified. We
make extensive use of our exponentiation knowledge to understand.

The logarithm of the given number x is how many times base b must be
exponentiated to produce x. For example, the logarithm of 10000 with a
base 10 is 4 or log10(10000) = 4, since 104 = 10000.

As noted with the previous chapter, there are several common bases to log-
arithms. The example above is in base-10. In base-2, log2(32) = 5 since
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Figure 4.1: Logarithmic growth of common bases

25 = 32.

Of course we can calculate logarithms of any base b against any number x.
Most of the times the logarithm will not be in integer form. For example
log2(31) = 4.954. Non-integer logs reveal that the number x is in between
its nearest two integers. For example, we know 31 is in between log2(16) = 4
and log2(32) = 5, especially close to 32, hence the 4.954 for log value.

Logs can also be negative. For example, log2(0.5) = −1 since 2−1 = 1
2
.

The plot below shows the logarithms of different bases. As one can see,
the increase in x is much faster than the increase in the logarithm values.
This means logarithm graphs are much better at handling massive increase
in values, which exponential graphs are not particularly good at.

John Napier first wrote about logarithms in 1614.The product rule in loga-
rithm is hugely important to the development of logarithm since it reduces
computation efforts of multiplications and divisions into additions, subtrac-
tions and looking up logarithm tables (a historical artifact that is no longer
in wide use).
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The concept of logarithm, especially that of the natural logarithm is impor-
tant to understanding exponential functions in a different perspective.

The natural logarithm was invented before Euler, but he defined it as such:

ln(x) = lim
n→∞

(x(1/n) − 1) (4.1)

as n approaches infinity.

He then wrote the inverse of y = axasx = logay.

4.1.2 Natural Logarithm and Properties

Following with the number e, we have the concept of natural logarithm. It is
the direct inverse to ex. The most basic definition of natural log is ln e1 = 1.

Note that e(lnx) = x and ln ex = x. This confirms the inverse relationship
between exponential and logarithmic functions.

As with exponentiation, logarithms come with a few properties. Natural
logarithm properties work the same as the properties below.

Note for these properties to work they must share a common base b.

Identities For any base b, logb(b) = 1 and logb(1) = 0 since b1 = b and
b0 = 1.

Product logb(xy) = logb(x) + logb(y).

Quotient logb
x
y
= logb(x)− logb(y).

Power Rule logb(x
y) = y logb(x).
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Figure 4.2: Berkshire Hathaway vs S&P 500 index with reinvested dividends

4.1.3 Graphing

As shown in the previous chapter, sometimes we want to use logarithm
scales to better visualize and understand massive growth, such as exponential
growth.

For example, since Berkshire Hathaway’s stock price has increased over forty-
thousand-fold since 1964, the more than two-hundred-fold growth of the S
& P 500 index fund (with dividends re-invested) appears non-existent but is
actually significant in its own way.

Once we adjust the y-axis by logarithm (semi-log), we can compare both
returns in a much clearer fashion. Even though the blue line seems closer to
the red line, we know in fact there is a 100-time gap between the blue line
and the red line after year 2000. This is a caveat to understanding logarithm
graph: each tick grows in exponential fashion, not in linear fashion! It looks
linear but it is not.
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Figure 4.3: Berkshire Hathaway vs S&P 500 index in log

Log-Log versus Semi-log The example above and many data visualiza-
tions ask for semi-log plots, which usually condenses exponential growth in
y into a more ”readable” format while keeping the x intact. However, some-
times both variables are graphed in logarithmic form, known as log-log. The
most prominent use case of log-log is in power law, especially Zipf’s Law.

4.2 Logarithmic Model

4.2.1 Function

We can write a basic form of logarithmic function as

y = a lnx+ b (4.2)

, where a is the rate of growth and b is the initial amount.

51



Figure 4.4: Approximation of ln x

Another way of looking at this model is to exponentiate both sides such that
ey = ea lnx+b = ea lnx · eb = elnxa · eb = xa · eb. Both a and eb are constants, so
x is the only variable affecting the outcome ey. Note that if b = 0 then xa · e
is essentially a multiplication of two exponential functions.

This model has a few distinct features. First, it has no upper bound, as an
increase in x in theory can increase infinitely. Second, it grows fastest in the
initial period and gradually slows down.

The graph below is an illustration of y = lnx. As we can see there is a fast
initial increase in y as x grows. Indeed, ln 1 = 0, ln 2 ≈ 0.693, ln 3 ≈ 1.099,
ln 8 ≈ 2.079, ln 20 ≈ 2.995 and ln 60 ≈ 4.094. The difference in x that leads
to one unit increase in y is rapidly increasing. This leads to a slower growth
as x increases, the exact opposite growth pattern to an exponential growth
function.
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4.2.2 Applications

Log scales are often used to assess various real-world phenomena. [11]

Earthquake The Richter scale is used to measure earthquake intensity.
The simplified format is R = log intensity, where R is known as the mag-
nitude and the intensity is a reference number. Every increase of 1 in R
means the intensity of the earthquake is 10 times stronger. This is why an
earthquake of R = 7 is enough to cause huge casualties and R = 8 is often
disastrous.

pH level The pH level is used to measure acidity of a chemical ranging from
0 to 14. A pH level of 7 means neutral, 0 to 7 fall under acidic range and 7
to 14 fall under basic range. It is written as pH = − log[H+], where [H+]
is the concentration of hydrogen ions measured in moles per liter. Due to
the negative coefficient, more hydrogen ions result in smaller pH and higher
acidity.
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Chapter 5

S-Shaped, Sigmoid Growth

And He has made from one blood every nation of men to dwell on
all the face of the earth, and has determined their preappointed
times and the boundaries of their dwellings – Acts 17:26

5.1 Introduction

Sigmoid growth is a S-shaped growth curve. Logistic growth is the most
well-known form of sigmoid growth. All logistic curves are sigmoid curves,
but not all sigmoid curves are logistic curves.

There are three general patterns of all sigmoid curves. One, they have an
upper limit. This leads to the second pattern, which is fast initial growth at
different rates that eventually slows down.

Three, due to the slowing down and tapering near the system’s maximum,
we can find an inflection point. This is a point where the growth of growth
rate (not growth itself) changes from positive to negative, indicating a de-
celerating growth rate. Imagine a dashboard of a car. The speed will always
be zero or positive, but it can go from 0 mph to 40 mph or slow down from
70 mph to 50 mph, which corresponds to acceleration and deceleration.
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In calculus terms, the growth rate is the first derivative and the inflection
point measures the derivative of the first derivative, or the second derivative.

Different sigmoid curves grow differently, most notably the locations of in-
flection points and the accelerating to decelerating phase. Due to that com-
plexity, we will only examine the growth function in a broad perspective.
In addition, advanced calculus is necessary to understand the mathematics
behind sigmoid growth curves, which is not assumed for all readers.

5.2 Logistics Model

Mathematician Pierre Francois Verhulst came up with the logistic model as
a solution to his teacher Adolphe Quetelet’s question on population growth.
The name of logistic model is based on its French name logistique, not from
the word logistics used for military. [22]

The logistic model is written as a differential equation. It must be solved by
calculus integration. [20]

The simplest form of a differential equation is written as

dN

dt
= rN (5.1)

where r is the growth rate and N is the amount. This is our old friend
exponential equation.

After integration we get the solution

N(t) = N0e
rt (5.2)

.

However Verhulst considered a maximal level for a population, since the
environment must have a carrying capacity. Thus he adds a carrying capacity
K as proportion to the current size N and the logistic model becomes
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dN

dt
= rN(1− N

K
) (5.3)

with a solution

N(t) =
KN0

(K −N0)e−rt +N0

(5.4)

where N0 is the initial population size.

There are three parameters to the logistic growth model. We have the initial
growth rate r, the carrying capacity K, and the changing rate N

K
.

A key aspect to the logistic model is its inflection is exactly in the middle of
the growth curve.

5.3 Sigmoid Growth

There are many types of sigmoid growth models depending on the specific
example. Myhrvold has collected over seventy logistic and sigmoid growth
models. Most of them are specific to applied fields, given the specific pa-
rameter tuning. Since most models are specific to circumstances and very
complex in nature, we will skip over them collectively. [15]

Tsoularis in his 2002 paper analyzed major types of logistic models to present
a more “generalizable” equation. Key parameters can be fine tuned to fit the
growth and the general graph. [23]

5.4 Notes on Prediction

As much as I enjoy writing about the accuracy and fascinating nature of
logistic models, I find the implications of over-using and misusing the growth
patterns much more important.
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Figure 5.1: A compilation of common sigmoid models

Even though logistic growth and sigmoid curves can quite accurately describe
many growth patterns, we must be cautious with applying this type of growth
model for prediction and estimation.

There are two ways to consistently produce biased and misleading predic-
tions. It is due to either predicting the inflection point too soon, leading to
predicting slowing down while the end result can be higher, or by underesti-
mating the eventual upper limit. Combined together, these two forces often
dramatically underestimate the actual results. [20]
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5.4.1 Notable Examples

There are several notable examples of failures in using sigmoid growth curves,
especially that of the logistic growth model.

For decades people have tried to predict peak oil, or when crude oil pro-
duction will reach its maximum before its inevitable decline, first due to oil
shortage and now due to the transition from fossil fuel to renewable energy
sources. A famous 1956 prediction said US oil production would peak around
1970, but that has simply not been true even as predictions kept refining.
[20]

Another spectacular failure in prediction is in global car ownership. The 1990
prediction was that global car ownership would saturate around 475 million
cars, but more than one billion cars were registered by 2017, more than twice
the original prediction. [22]

5.4.2 Overuse

A really big problem is in being over confident in this model’s predictability.
As Sandberg writes, “We cannot forecast a system with the same confidence
with which we can backcast the system”. [20]

Early on scientists like Pearl was overly confident and overused logistic mod-
els on nearly everything he could find. It was a new concept at the time
and took a few decades to prove things wrong. Hindsight is always clear but
foresight is much harder. However, by then the habits are already entrenched
and an entire generation of scientists were educated by this method and now
understanding the model’s limitation becomes harder to teach. [22]

5.4.3 Reasons for Failure

Why doesn’t prediction work?

Constance Crozier notes it is incredibly hard to predict the inflection point
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with earlier data. However even with more data points, the correct curve is
still very difficult to find until the curve starts tapering near the end. [7]

The real-world limit or carrying capacity is shaped by physical constraints,
such as physics, biology, chemistry, etc. However, technology changes the
fundamental nature of things by improving efficiencies on various fronts.

When predicting future population, none of the forecasters can account for
the dramatic increase of crop yields due to fertilizers, better seeds, more ef-
ficiency farming techniques, mechanization of agriculture, and various tech-
nologies that constitute the Green Revolution.

In terms of oil production, more oilfields are being uncovered all the time.
The obvious ones in Saudi Arabia are being supplanted by deep ocean sources
and also hidden ones in oil states such as Texas and Saudi Arabia itself. Oil-
field discovery technology makes that possible. At the same time, machines
are becoming more fuel efficient, so despite a massive increase in energy
consumption, the rate of depletion (as a percentage) based on efficiency is
actually slowing down.

Another interesting example on Mozart’s output. Some claim that by using
logistic growth curve, Mozart actually produced 90 percent of his best works
when he died at a young age of thirty-five. However, Smil found multiple
growth curves that equally fit historical data without depending on logistic
curve parameters. This seems to imply that multiple forms of models can fit
the same dataset with vastly different results and interpretations. [22]

Hence this leads to another key insight. The more important thing is not
interpreting the results but knowing what to choose for the analysis and why.
It’s understanding how these growth curves work at its most foundational
level. Extending the logic, perhaps the biggest insight about studying sig-
moid growth curves is understanding the limitations and tradeoffs involved
in choosing each type of growth model.
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Chapter 6

Combinatorial Growth

He told them another parable: “The kingdom of heaven is like a
mustard seed, which a man took and planted in his field. Though
it is the smallest of all seeds, yet when it grows, it is the largest
of garden plants and becomes a tree, so that the birds come and
perch in its branches. – Matthew 13:31-32

6.1 Premise

My first encounter with combinatorial growth is an article Professor Karaali
shared with me called “Exponential Growth Isn’t Cool. Combinatorial Growth
Is.” It is an application of combinatorial growth (also known as combinato-
rial explosion) to the digital technology industry. It also coincided with a
question I had when learning combinatorics: if things grow like factorials,
how does the underlying dynamics work? [1]

An interesting application of combinatorics is in economics. Economists are
using combinatorics retrospectively to explain the mathematics behind the
Industrial Revolution and its explosive growth, when situated in a long time-
horizon (e.g. two thousand years).

In this chapter we will explore each concept starting with an introduction to
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basic combinatorics.

6.2 Combinatorics

Combinatorics is difficult to define, so let’s get to the point. Its main purpose
to count is demonstrated throughout history.

Combinatorics comes with several basic rules and definitions. [24]

Rule of sum If there are n(A) ways to do something in set A and n(B)
ways to do something in set B and they are distinct from each other, then
there are n(A) + n(B) ways to do A or B.

Example You want to order one food item. A taco truck gives you 15
different options and a Chinese takeout restaurant gives you 25 completely
different options. There are no overlaps, so there are 15 + 25 = 40 total
items to choose your one item.

Rule of product If there are n(A) ways to do something in set A and n(B)
ways to do something in set B and doing A and B is independent (whatever
you choose for A won’t affect the number of choices for B), then there are
n(A) · n(B) ways to do A and B.

Example There are 4 types of burgers (regular, cheeseburger, double cheese-
burger, BBQ burger) and 3 types of drinks (water, cola, lime soda) to choose
at the local burger shop. You need to create a combo with the 4 burger
options and 3 drink options. There are 4 · 3 = 12 total ways to create a
unique combo.

Inclusion-Exclusion Principle To avoid double-counting (or multi-counting),
we need to subtract overlaps. Suppose there are two sets A1 and A2, each
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Figure 6.1: Principle of Inclusion and Exclusion

with |A1| and |A2| ways of counting (with some ways overlapping). If we
want to count every combination between the two sets, we must subtract the
overlapping ways. Hence |A1 ∩ A2| = |A1| + |A2| − |A1 ∪ A2|. Note that as
the number of sets increase, the principle’s complexity increases.

Example How many numbers between 1 and 100 are divisible by 3 or 4?
There are 100

3
≈ 33 numbers divisible by 3 and 100

4
= 25 numbers divisible

by 4. But some of these numbers are both divisible by 3 and 4 (e.g. 12, 24,
etc.), so we must consider numbers divisible by 3 · 4 = 12, or 100

12
≈ 8. There

are 33 + 25 – 8 = 50 numbers divisible by 3 or 4.

Also consider this Venn Diagram, which illustrates the application of the
principle. [5]

Factorials A factorial is defined as n! (where n is a non-negative integer).
It is the product of all positive integers less or equal to n or the product
of n and its next smallest factorial (n − 1)!. The math notation is n! =
n · (n− 1) · (n− 2) · · · · · 2 · 1 = n · (n− 1)!.

Example 5! = 54 · 3 · 2 · 1 = 120.
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Permutation Permutation is each arrangement of things with a specific
order. The things come from a specific set and the order matters. The most
common permutation is n permute k, or nPk =

n!
(n−k)!

ways to order k things
out of n unique things.

Example A set includes 4 letters A, B, C, and D and we need to make a
word of 2 letters, including any gibberish. Since the spelling matters, we use
permutation and there are 4!

(4−2)!
= 24

2
= 12 ways to make a 2-letter word.

There are 4 options to assign the first letter and 3 leftover options for the
second letter, hence 4 · 3 = 12.

Combination Combination is the ways to combine k things out of n total
possibilities without considering order. The most common combination is n
choose k, or nCk = n!

(n−k)!k!
ways to combine k things out of n unique total

things.

Example Suppose we need to mix and match 2 unique ice cream flavors
out of 20 total possible flavors at the local ice cream shop (e.g. Bert and
Rocky’s). We can choose 20!

(20−2)!2!
= 20!

18!2!
= 20·19

2
= 190 combinations. There

are 20 options for the first scoop and 19 leftover options for the second scoop,
but getting chocolate and then vanilla is no different than getting vanilla and
then chocolate, hence we divide the repeats to get 20 · 19/2 = 190.

6.3 Factorial Growth

A simple exploration of factorials and its connection to exponential growth
reveals some interesting insights.

By calculating the values of factorial n! and the corresponding 2n, we can
now calculate the ratio r(n) = n!

2n
. This is a direct way of assessing the

growth rate between factorials and exponential functions. Then we can also
calculate a recursive ratio r(n+1)

r(n)
. The results are as follows.
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n n! 2n n!/2n recursive ratio
1 1 2 0.50
2 2 4 0.50 1.0
3 6 8 0.75 1.5
4 24 16 1.50 2.0
5 120 32 3.75 2.5
6 720 64 11.25 3.0
7 5040 128 39.38 3.5
8 40320 256 157.50 4.0
9 362880 512 708.75 4.5
10 3628800 1024 3543.75 5.0
11 39916800 2048 19490.63 5.5
12 479001600 4096 116943.75 6.0
13 6227020800 8192 760134.38 6.5
14 87178291200 16384 5320940.63 7.0
15 1307674368000 32768 39907054.69 7.5

As we can see, when n < 4, factorials grow slower than exponentials, but
then r(n) grows faster and faster, as the recursive ratio tells us. For example,
r(10) is 5 times that of r(9), which itself is 4.5 times of r(8). This indicates
that 10!

8!
is growing 5 · 4.5 = 22.5 times faster in proportion than 210

28
= 4.

Indeed the math checks out, as 9·10
4

= 22.5.

This seemingly rocket-ship like growth trajectory of the ratio is a key char-
acteristic of factorial and combinatorial growth. In the later stage of this
growth function, all previous gains pale in comparison, as if they don’t exist.
When plotting such growth, almost all previous growth seem to be hovering
around 0, due to the latest round of growth expanding the scale by one or
multiple orders of magnitude.

This means while different recursive ratio grows in a linear fashion, the ratio
r(n) grows much faster in a factorial manner. Even the rapid growth of ex-
ponential functions cannot tame the monstrous speed bigger factorials carry,
as we need to take the log of r(n) to display earlier values of r(n) in details.

In fact, this pattern repeats even as we increase the base for the exponential
function bn, since the factorial values n! do not change. The ratios and
recursive ratio will be different (growing slower), but the pattern continues.
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Figure 6.2: Growth of recursive ratios in linear and semi-log plot

6.4 Combinatorial Explosion

As observed above, factorials grow very quickly. While exponential growth
is the initial amount growing by a constant proportion of its base (and linear
growth is when the initial amount grows by a constant fixed amount), combi-
natorial growth is the initial amount growing by an increasing speed. It’s not
2·2·2·2·2 but 1·2·3·4·5, which can be rewritten as 20 ·21 ·21.58 ·22 ·22.32 = 26.9.
You don’t even need to consider the “long run” to see an explosive growth.
In fact, my corollary is it will explode sooner than you expect. Here it is 25

versus 26.9, which will accelerate soon.

In short, the relationship between the first base unit and the next base unit
is increasing – 2, then 3, then 4, and so on. . . An interesting side note is such
change grows in an exponential decay fashion. Below is a plot of the growth
rate from one base integer to the next. For example, 2 grows 50 percent to
3 and 3 grows 33 percent to 4 and so on.

6.5 Economics - Weitzman

The late Harvard economist Martin Weitzman wrote about a combinatorial
model on innovation in 1998. The premise is that innovation occurs as a
combination of different ideas (or technologies), which combinatorics can
help explain. A classic example is how Thomas Edison experimented with
thousands of combinations of materials before finding the bamboo filament
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Figure 6.3: Growth from one integer base to the next

that produced the first commercially viable incandescent light bulb. [25]

This model carries a simplified assumptions. Only two ideas are combined
at once because considering x ideas combinations at the same time will dras-
tically complicate the calculations.

An implication of this model is once a new combination is considered “useful”,
it can be added back to the original stock and be combined freely with any
other idea (and subsequent pairings). For example, the light bulb can now
become a lamp.

So this growth model has five parameters. First, the initial starting ideas.
Second, how many ideas we choose to combine each time (here we choose
two). Third, the percentage of the new idea combination deemed useful.
Fourth, the new total that becomes the initial starting ideas for the next
round. Last, time itself, which indicates how many “rounds” (thorough ex-
haustion of ideas) instead of this constant moving unit on the horizontal
axis. And it is this assumption that has a huge implication on how this
model applies to economics.
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Round Initial Unique pairs New pairs Useful ideas Total
1 100 4950 4950 49 149
2 149 11026 6076 61 210
3 210 21945 10919 109 319
4 319 50721 28776 288 607
5 607 183921 133200 1332 1939
6 1939 1878891 1694970 16950 18889
7 18889 17887716 16008825 160088 178977
8 178977 16016293776 16016114799 160161148 160340125

We can devise a simple model of such process.

Nr+1 = Nr +

(
Nr

2

)
· useful (6.1)

, where Nr denotes the number of ideas for round r.

Let’s start with a thought experiment. Imagine we start with 100 ideas and
find all the 2-idea combinations. That yields 100 choose 2 = 4950 unique
combinations. Assume 1 percent of the unique pairs are useful, which we
add back to the original mix. Now we have 100 + 49 = 149 ideas for the
next round of mixing. 149 choose 2 = 11026, which contains the 4950 pairs
already found. There are 11026 – 4950 = 6076 new combinations from round
0 and 1 percent of that is 61. Now we have 149 + 61 = 210 ideas in the mix.
Repeat this a few times and the results look like the following table.

We see the first four rounds with relatively fast growth, but they are not
nearly as crazy as the next three rounds. Then there is an astronomical
leap from round 7 to round 8, a growth of 160340125

178977
= 895 times! That is a

moment of combinatorial explosion. The following plot shows a hockey stick
pattern. Each growth curve appears much flatter in the subsequent round
accounting for the last round of fast growth (and even explosion). All the
impressive growth beforehand now appears miniscule and barely noticeable
(often looking like a flat line near zero). All the growth from 100 in round 1
to 179000 in round 7 pales in comparison to the 160 million new pairs round
8 contributes to the total. It’s about three orders of magnitudes (1000 times)
larger!

67



Figure 6.4: The number of ideas for each round
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Figure 6.5: Speed of growth of two different initial idea count

The earlier rounds of combinatorial growth can still resemble exponential
growth, but it is the sharp hockey-stick behavior that tells us we are in the
combinatorial explosion territory. But that is not enough evidence – we also
have to examine the growth rate of each round. Exponential growth rate
stays fixed (e.g. 5 percent, 25 percent, etc.) and combinatorial growth rate
accelerates exponentially.

Another observation is in the “inevitability” of such explosion. Even if we
start with 25 ideas (assume we have caveman technologies), we will still get
the explosion at round 14.

It may be easy to confuse exponential growth with combinatorial growth
before such pre-explosion, so a helpful way is to examine the speed of such
growth, namely the new quantity divided by the old quantity. Plotting them
for both the initial 100 ideas and initial 25 cases, we can see a similar explo-
sion in growth rate.

There are several caveats to Weitzman’s model due to our assumptions. This
thought experiment relies on each round of total combination to happen and
exhausts simultaneously, but that is not true in real life. It may take many
years for someone to produce one useful new idea. Putting stirrups on horses
took centuries. Idea growth is most likely staggered left to right.

And if we were to apply the combinatorial growth model, then why is our
economy (by means of GDP) growing at an exponential rate? Weitzman
suggests that because researching and developing new ideas and technologies
also cost a lot of resources and those costs go up much faster than how many
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Figure 6.6: GDP per capita of the U.S. 1918 - 2018

new ideas we can generate, so we cannot pursue all the useful ideas. That
is true, given not each new useful idea takes the same amount of resource to
invent (e.g. a basic diesel engine and a semiconductor assembly line). And
of course, a sequence exists in technological development. You cannot go
from horses to cars without combustion engine, metallurgy, oil drilling, etc.
Resource constraints drag the potential combinatorial growth back to the
exponential arena. [8]

Maybe we should take comfort in the long-term implication of combinatorial
growth. Even if at present we don’t observe explosive growth, in the long
run things are getting much much better. [9]
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Figure 6.7: World GDP over two thousand years
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Chapter 7

Fractal Growth

But as He who called you is holy, you also be holy in all your
conduct, because it is written, “Be holy, for I am holy.” - Peter
1:15 - 16

7.1 Premise

Fractal has become a buzzword in mathematics. Everyone has heard of it
at some point with pictures of snowflakes or videos of a seemingly-endless
pattern (known as a Mandelbrot set). But very few of us understand what
a fractal is, what makes it special, and how it comes to be.

This chapter is an exploration on fractals.

7.2 History

According to Leonard Sander, “a fractal is an object with a sprawling, tenu-
ous pattern. As the pattern is magnified it reveals repetitive levels of detail,
so that similar structure exists on all scales.” [21]
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In Gulliver’s Travels Jonathan Swift referred to the basic idea of a fractal:

So, naturalists observe, a flea hath smaller fleas that on him prey;
and these have smaller still to bite ‘em; and so proceed ad infini-
tum.

The definition of a fractal was not so clear for many years. Mathematicians
have pondered the properties of fractals, most notably Gottfried Leibniz,
Helge von Koch, Waclaw Sierpinski, Felix Hausdorff, Lewis Fry Richardson,
and then Benoit Mandelbrot (who coined the term).

British mathematician Lewis Fry Richardson among other things pioneered
mathematical methods to predict weather patterns. He was working on a
theory of war and peace in the 1950s. His hypothesis was based on the
length of two nations’ borders, so measuring the borders became something
he researched. [26]

The conventional view is when you use more precise instruments to measure
the same length (e.g. a meter stick versus a tape measure based in centime-
ters), you should get a more accurate reading since the ultimate, objective
length does not change but the instrument is more precise.

However, Richardson found out that zooming in changed the border length
of Britain! The more he zoomed in (from 100 km to 10 km and so on), the
longer the border seems to be. For example, using a measuring stick the
length of 200 km, the border of Britain is at around 2400 km. Shortening
the measuring stick to 100 km and 50 km, the border length extends to 2800
km and 3400 km respectively.

This phenomenon is because borders are not straight lines, so measuring
border lengths with straightedges will ignore plenty of the natural twists and
turns of the actual border.

Similarly, Richardson discovered that the increase in length is not random
when adjusted for scale. When you plot the length of borders versus the
measuring unit (how long the measuring stick is), there is evidence for power
law scaling.
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Figure 7.1: Approximating Britain’s borders with different scale

Richardson found that the crinkliness (or fractality) of west Britain is 0.25,
0.52 for Norway, 0.02 for South Africa, and 0.18 for the border between Spain
and Portugal. This means if we double the resolution, say from a 100 km
measuring stick to a 50 km measuring stick, the length of Britain’s west coast
grows by 25 percent, more than 50 percent for Norway, and so forth.

This means the value of a measured length is not helpful unless we know the
scale of resolution to measure it in the first place. We must know the unit.

However, Richardson’s findings were dormant until Benoit Mandelbrot pub-
lished his paper “How Long Is the Coast of Britain? Statistical Self-Similarity
and Fractional Dimension.”

Benoit Mandelbrot at the time was a researcher at IBM. He began studying
the data on coastlines based on Richardson’s discovery and called the rela-
tionship between the zooming-in similarity fractality (or crinkliness). If the
length changes depending on the resolution (or how “zoomed-in” the line is),
then the fractality is non-zero. A fractality of zero means the shape is per-
fectly smooth, because no matter how much you zoom in, the actual length
(or perimeter) does not change. A basic circle is one such example.

Mandelbrot defined the word “fractal” and went on to develop the entire
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field of fractal geometry, giving shape (pun intended) to how we understand
fractals.

7.3 Definition and Contexts

There are several important concepts to understanding fractals: self-similarity,
fractal dimension, scaling, and networks.

Self-similarity is the key characteristic of fractals. It means each smaller com-
ponent of something has the same structure as the larger piece. An analogy
to a self-similar structure is Russian nesting dolls. A Romanesco broccoli
head contains many smaller broccoli heads that have the same structure for
multiple “rounds”.

Likewise, the mathematics behind self-similarity must be the same as well.
As noted above, the 0.25 for west coast of Britain is self-similar, because as
one doubles the resolution, the border length grows by 25 percent.

This means fractals are scale-invariant. Scaling up or down the dimension
will not change the structure of things. The picture below illustrates this
property well. Each small X groups together in fives to form a bigger X,
which joins together to form yet another bigger X. There are four such levels
below.

Mandelbrot famously wrote: ”Clouds are not spheres, mountains are not
cones, coastlines are not circles, and bark is not smooth, nor does lightning
travel in a straight line.” This is talking about how shapes in the real world
are not beautiful nor orderly. Because of this, fractal geometry plays a role
in our understanding, especially in considering something’s dimension. [26]

In classical (Euclidean) geometry, dimensions are whole numbers. A line
(length) is one-dimensional. A square (area) is two-dimensional. A cube
(volume) is three-dimensional.

Fractal dimensions are different. One can calculate it by adding 1 to the
fractality, like the values above. Hence, the fractal dimension of Norway is
1.52, 1.02 for South Africa, and so on.
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Figure 7.2: A five-repeated fractal
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As Smil notes, Fractal dimension equals 1 for smooth Euclidian shapes, be-
tween 1 and 2 for two-dimensional shapes – seacoast length has D of 1.25
– and as much as 2.9 (of possible 3) for such complex three-dimensional
networks as human lungs. [22]

7.4 Sierpinski Triangles

How else can we derive the fractal dimensions? We first look at classical
geometry.

When we double the length of a one-dimensional line, the length increases
by a factor of 2. For a square, the area increases by 22 = 4. For a cube, the
volume increases by 23 = 8. This is essentially the scaling factor 2 raised to
the n-th power, n being the dimension.

With fractals, things are different.

Let’s take a look at Sierpinski Triangles, named after the mathematician
Waclav Sierpinski. Start with an equilateral triangle, divide it into four even
parts and remove the center triangle. Now one can repeat this process for as
long as needed.

As one can see, if we scale a smaller Sierpinski triangle (say the top one of
the three plus the empty center) by a factor of two, the area increases by 3,
instead of 4. We know the increase is only 3 because the center small triangle
is missing and the other two small triangles are the same as the top small
triangle.

This means our dimension following classical geometry reads like 2d = 3,
where d is the dimension. Using logarithm we derive d = log2(3) = 1.585,
which is a non-integer! 1.585 is the fractal dimension of Sierpinski triangle.
As we zoom in on each smaller triangle, we realize this pattern keeps on
repeating. The area increases or shrinks by a factor of 3, instead of 4. This
is why it’s not a fully 2-d shape.

This leads to an important property of fractals, that of scaling. As West
notes, “Power law scaling is the mathematical expression of self-similiarty
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Figure 7.3: Sierpinski triangle
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and fractality.” [26]

West has also noted that through natural selection, fractal networks (such as
blood vessels) can optimize their distribution of energy so that “organisms
operate as if they were in four dimensions”. That extra dimension is what
makes fractal geometry so interesting and often counter-intuitive.

As noted from the Sierpinski triangle example, the density of all fractals
decreases as its size increases. The area increases by a factor of 3 due to
doubling its side length, but the ratio of the area over the “full” area will
keep decreasing due to hollowing out the center triangle.

Another notable example of fractals is Koch Snowflakes, named after Helge
von Koch.

It is constructed as following. Start with an equilateral triangle and divide
one of its line segment into equal threes. Draw an equilateral triangle on top
of the middle third line segment like a little hill. Then keep doing that to
every line segment and repeat. You will get the picture below.

If you start with an equilateral triangle, the first iteration should result in
the Star of David. Then it gradually looks like the following.

During each iteration, the side length increase by a factor of 4 though scaling
is only by 3. This means the fractal dimension of Koch snowflakes must
satisfy 3d = 4, or d = log3(4) = 1.262.

And the boundary of the Mandelbrot set has fractal dimension of 2 — mean-
ing it is as rough a coastline as it could possibly be. [22]

Fractals are used in many different areas, notably in video game and film
graphic renderings. Computer software can easily generate background im-
ages for mountains and such due to the fractal nature of well, nature.

79



Figure 7.4: Constructing a Koch fractal from one triangle
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Figure 7.5: Constructing a Koch fractal from one triangle
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Chapter 8

Collective Outcomes

For whoever has will be given more, and they will have an abun-
dance. Whoever does not have, even what they have will be taken
from them. - Matthew 25:29

8.1 Premise

After examining six types of mathematical growth, the question becomes
”what can we learn about things after the growth process?”.

When you examine the results of different growth functions, they typically
fall under two major buckets: normal and log-normal distribution, or asym-
metrical distribution (also known as power law).
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8.2 Normal and Lognormal

8.2.1 Normal Distribution

Normal distribution is commonly known as having a bell-shaped curve. It
is also known as the Gaussian distribution, named after the famous mathe-
matician Carl Friederich Gauss.

Gauss was not the first mathematician to discover the normal distribution.
Pierre-Simon Laplace published Memoire sur la probabilite in 1774, thirty-
five years before Gauss published his Theoria motus corporum coellestium
in 1809. In fact Laplace wasn’t the first mathematician either. Abraham
de Moivre published Doctrine of Chances in 1738, which contained normal
distribution curve. [22]

Normal distribution has several key characteristics. The distribution is a bell-
shaped curve, which means the shape is symmetrical and continuous with no
abrupt cut-offs. To obtain the distribution, it requires a certain sample size.

The mean and standard deviation define the shape and spread of the curve.
The empirical rule states 68.3% of the results fall within one SD of the mean
and 95.4% of the results fall within two standard deviations of the mean.

Figure 8.1: Normal distribution with empirical rule
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Due to the nature of normal distribution, we often look at the ends of the
curve, which are the outliers. Very often we look specifically at the tail on
the right end in statistics.

8.2.2 Central Limit Theorem

Central limit theorem is the foundation to all normal distributions. It means
the sum of a numerous independent random variable tends to be normally
distributed regardless of its underlying distribution. In other words, a lot of
observations will result in normal distribution.

The power of central limit theorem lies in the normal distribution of averages
(or means). Even if the observed data varies drastically, if we compute the
averages of such sample and repeat that process many times, the averages
will become normally distributed.

The technical definition is as follows:
∑

X ∼ N(µn, σ
√
n), where µ is the

mean and σ is the standard deviation.

For more details, please refer to the appendix for a complete proof of the
central limit theorem, along with an overview of probability and statistical
concepts.

8.2.3 Application

A key observation is that most outcomes of growth processes are normally
distributed. For example, distribution of heights, which themselves are func-
tions of linear growth with upper limit. The picture below describes the
height distribution of Italian soldiers born in 1900. [10]

One potential problem is applying arithmetic mean from the normal distri-
bution. If the results deviate widely, then the inference will have big issues.
For example, if we have include very tall people in our sample and assume
the population height to be normally distributed, it essentially assumes the
existence of very short people who are actually nonexistent.
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Figure 8.2: Normal distribution of Italian soldiers born in 1900

Hence we want to be careful about the degree of confidence we place in
normal distribution.

8.2.4 Log-Normal

Sometimes the distribution is skewed but still has a bell-shaped curve. Such
skewed (nonnormal) distributions are due to specific growth. They often
skew to the left, also known as having a long tail to the right.

Once we transform the horizontal axis into log form, the distribution will
look similar to a normal curve, hence its name log-normal.
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8.3 Power Law

Not all growth outcomes are distributed normally. Sudden growth can pro-
duce asymmetrical distributions that span orders of magnitude. These dis-
tributions are often exponential functions or power-law functions.

8.3.1 Introduction

Power-law functions have the following attributes. They can approximate
f(x) = ax−k, where a, k are constants. In ”perfect” condition, they produce
L-shaped curve on linear plot. That means the trend is almost the direct
opposite of exponential growth if seen across the mirror. This is because
exponential distribution is in fact a form of power law distribution.

If you transform the axis or axes in log, the functions will show linear qualities
again. For example, the global distribution of volcanic eruptions display
such tendency. The linear plot is that of exponential decline, but when
transformed in semi-log the relationship suddenly appears linear. [16]
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Figure 8.3: Global time-size distribution of volcanic eruptions on Earth

One can also see the connection between fractals and power law distribution,
since the concept of self-similarity will quickly produce an increase or decrease
in outcome growth.

8.3.2 Pareto Distribution

The most famous power-law distribution is the Pareto distribution, named
after Italian economist Vilfredo Pareto. He noted that 20% of rich Italians
owned 80% of land in Italy and this pattern could be applied to many phe-
nomena.

This in turn creates the the Pareto principle, or the 80/20 principle, that
80% of the outcomes are from 20% of the causes. It is essentially saying
a small group accounts from a disproportionately large amount of the total
outcomes.

Benoit Mandelbrot came up with the form of Pareto distribution: Pr(X >
x) = x−D.

Wealth disparity is one of the most famous and discussed example of power
law. It is often dubbed the Matthew effect, named after the famous biblical
verse (in the beginning of this chapter).

According to the Federal Reserve’s consumer finance survey, the top 1%
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group in the United States holds around 46 trillion dollars of wealth by the
end of 2021, a staggering 46

142
= 32.4% of total national wealth. Add in the

next 9% with their 53 trillion dollars of wealth, the top 10% hold 99
142

= 69.7%
of total national wealth. [18]

Figure 8.4: Distribution of Household Wealth in the U.S. since 1989
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Figure 8.5: Word rank order plotted against frequency in Russian

8.3.3 Zipf’s Law

Linguist George Zipf claimed that word frequency (Pn) is inversely propor-
tional to its rank n in the frequency table: Pn ∝ 1

na , with the exponent a
being close to 1. This means the most frequently used the word is about
twice as frequently used as the second most common word, as illustrated by
the plot below.

Zipf also studied the inverse power relationship between the ranking r of cities
by their population size x: x = r−1. It is actually the same as the Pareto
distribution with the variables swapped. The figure from below measures the
population of U.S. cities against U.S. population in 2009.

Notice both observations are based on log-log scale, which means if plotted
linearly, the graph will look extremely skewed with a very long tail.

89



Figure 8.6: Population rank of U.S. cities plotted against 2009 population in
log-log

8.3.4 Issues

When the sample size is relatively small and the data has large variance,
different distributions with long tails are hard to separate. Power-law, log-
normal, and Weibull distributions are such examples. In addition, log-normal
and power-law functions often behave similarly. [22]

So the power law doesn’t always hold true, partly because we are trying to
explain complex reality with simple models (which we know are never correct
but sometimes useful).
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Appendix A

Proof of Central Limit
Theorem

This proof is designed to be self-containing, hence it can be used as a brief
primer on the necessary contexts for understanding the Central Limit Theo-
rem. [19] [12]

A.0.1 What is CLT?

The Central Limit Theorem (CLT) is fundamental to probability and statis-
tics. It can provide valuable insights from random-seeming things.

In plain English, CLT means given a large sample size, the distribution of
sample means will roughly become normal, regardless of the population dis-
tribution. For example, cows at a local ranch have different weights, which
may or may not form a bell-shaped curve. However, if you take the average
of the cow weight and do that many times with randomly generated data-set
or results from other comparable ranches, then the mean weight will form a
bell curve.

94



A.0.2 Version

There are many versions of the Central Limit Theorem, depending on dif-
ferent assumptions. The most common version is the Lindberg-Levy CLT,
which is what we will prove here.

A.0.3 Relevant Concepts

Several concepts are important to understanding the Central Limit Theorem.

Note The mathematical symbols and formulae used in this proof are sim-
plified to my best ability, since increasing abstraction makes understanding
more difficult, especially for those without background in probability theory
or statistics.

Random Variables A random variable (RV) is a variable X that assigns
outcome values randomly depending on the type and the function. It can be
discrete, continuous, or a mix of both. A discrete example is flipping a fair
coin, where the input is a flip and the outcome is one of two coin sides.

i.i.d An independently and identically distributed (i.i.d) random variable
has the same probability distribution as the other random variables and they
are mutually independent of one another. For example, flipping a fair coin
means outcome from each flip does not depend on the outcome from previous
flips.

Discrete and Continuous Variables Without loss of generality or preci-
sion, I define discrete and continuous variables as follows. Discrete variables
can be counted, for example numbers on a six-faced dice, binary 0 and 1, or
simply all non-negative integers. Continuous variables cannot be counted,
because they can extend to infinity. An example is all real numbers, since
you can write 3, 3.01, 3.001, . . . infinitely.
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Probability Mass Function A probability mass function p(x) = P (X =
x) provides the probability that a discrete random variable X is exactly equal
to some value −∞ < x < ∞. The probabilities of a probability mass function
must be non-negative and add up to 1, or p(x) ≥ 0 and

∑
x p(x) = 1.

Probability Density Function A probability density function (PDF)
f(x) provides the probability that a continuous random variable X is equal
to. We can integrate the PDF to derive the cumulative distribution function
(CDF), in this case F (x) =

∫∞
−∞ f(x)dx.

Mean The mean (colloquially known as the average) of X is formally
known as the expected value E[X].

If X is a discrete random variable with finite outcomes x1, x2, . . . , xk and cor-
responding probability p1, p2, . . . , pk, the expected value isE[X] =

∑k
i=1 xipi =

x1p1 + x2p2 + . . . xkpk.

For example, a fair six-faced die with numbers 1, 2, 3, 4, 5, 6 has an expected
value of E[X] = 1

6
· 1 + 1

6
· 2 + 1

6
· 3 + 1

6
· 4 + 1

6
· 5 + 1

6
· 6 = 3.5.

If X is a continuous random variable with a probability density function of
f(x), then the expected value is E[X] =

∫∞
−∞ xf(x)dx.

Variance If X is a random variable with a mean of µ (or E[X] = µ), then
the variance of X is V ar(X) = E[(X − µ)2].

For example, the variance of a fair six-faced die with 1, 2, 3, 4, 5, 6 is V ar(X) =
1
6
((1−3.5)2+(2−3.5)2+(3−3.5)2+(4−3.5)2+(5−3.5)2+(6−3.5)2) = 35

12
.

Note that V ar(X) = E[(x−E[X]2)2] = E[X2]−E[X]2, which we will cover
in the later section.

Standard Deviation The standard deviation (sd) of a random variable
X is the square root of its variance. Therefore SD =

√
V ar(X).
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Moments We will define moments in more details later. For now, re-
member that the expected value (mean) is the first moment of a probability
distribution (PMF or PDF) and the variance is the second moment of such
probability distribution.

A.0.4 Technical Definition

Given a sequence of n independently and identically distributed (i.i.d) ran-
dom variables (RV) X1, X2, . . . , XN with a mean µ = 0 and variance of σ2.
Note that σ2 < ∞.

Let a RV Y be the mean of this sequence of i.i.d. RVs X1, X2, . . . , XN , so
Y = 1

n

∑n
i=1Xi. The mean of Y is µ and the variance of Y is σ2

n
.

If Y ∗ is a RV with a center of µ and variance of σ2

n
, then Y ∗ distribution is

approximately same as the standard normal distribution Y ∗ ∼ N(0, 1).

Alternative From ”Applied Statistics and Probability for Engineers” by
Douglas Montgomery and George Runger, the CLT is defined as “ifX1, X2, . . . , XN

are n random samples drawn from a population with overall mean µ and fi-
nite variance σ2, and if X̄n is the sample mean, then the limiting form of the
distribution, Z = limn→∞

√
n X̄n−µ

n
is a standard normal distribution” (241,

Montgomery/Runger).

A.1 Background Concepts

There are several background concepts I need to cover, after finishing the
proof.

A.1.1 Mean

There are several properties about expected values.
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Linearity: E[X + Y ] = E[X] + E[Y ]

E[aX] = aE[X]

If X and Y are independent, then E[XY ] = E[X] · E[Y ]

A.1.2 Variance

There are several properties about variance.

V ar(X) = E[(x− E[X]2)2] = E[X2]− E[X]2

V ar(a) = 0 for a constant a.

V ar(X + a) = V ar(X).

V ar(aX) = a2V ar(X).

The variance of a sum of two random variables

A.1.3 Moment Generating Functions

The moment generating function (MGF) of a random variable X is M(t) =
E[etX ] if the expected value is defined. It may or may not exist for any
specific value of t.

If the random variable X is discrete, then M(t) =
∑

x e
txp(x).

If the random variable X is continuous, then M(t) =
∫∞
−∞ etxf(x)dx.

M ′(t) = d
dt

∫∞
−∞ etxf(x)dx =

∫∞
−∞ xetxf(x)dx.

M ′(0) =
∫∞
−∞ xf(x)dx = E[X].
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A.1.4 Standard Normal Distribution

Explain what is a standard normal distribution and how to write it.

A.2 Before The Proof

There are several preparatory steps before the final proof.

A.2.1 E[Y ] and V ar[Y ]

Remember that Y = 1
n

∑n
i=1 Xi.

E[Y ] = E[ 1
n

∑n
i=1 Xi] =

1
n
E[

∑n
i=1Xi] =

1
n

∑n
i=1E[Xi] =

1
n

∑n
i=1 µ = nµ

n
= µ.

V ar(Y ) = V ar( 1
n

∑n
i=1Xi) =

1
n2vat(

∑n
i=1Xi) =

1
n2

∑n
i=1 V ar(Xi) =

1
n2

∑n
i=1 σ

2 =
nσ2

n2 = σ2

n
.

In conclusion, E[Y ] = µ and V ar(Y ) = σ2

n
.

A.2.2 Y ∗

Let’s create a new random variable Y ∗ that is centered by its mean E[Y ] and
has a standard deviation of

√
V ar(Y ).

Y ∗ = Y−E[Y ]√
V ar(Y )

= Y−µ√
σ2/n

=
√
n(Y−µ)

σ
=

√
n( 1

n

∑n
i=1 Xi−µ)

σ
.

A.2.3 Change of Variables

Define the random variable S as the sum of X1, X2, . . . , XN , so S =
∑n

i=1Xi.

E[S] = E[
∑n

i=1Xi] =
∑n

i=1E[Xi] =
∑n

i=1 µ = nµ.
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V ar(S) = V ar(
∑n

i=1Xi) =
∑n

i=1 V ar(Xi) =
∑n

i=1 σ
2 = nσ2.

S∗ = S−E[S]√
V ar(S)

= S−nµ√
nσ2

=
∑n

i=1 Xi−nµ

σ
√
n

= (X1−µ)+(X2−µ)+···+(Xn−µ)
σ
√
n

=
1√
n

∑n
i=1(Xi−

√
nµ)

σ
.

Remember Y ∗ = Y−E[Y ]√
V ar(Y )

= Y−µ√
σ2/n

=
√
n(Y−µ)

σ
=

√
n( 1

n

∑n
i=1 Xi−µ)

σ
=

1√
n

∑n
i=1(Xi−

√
nµ)

σ
.

It turns out that Y ∗ and S∗ are equivalent in terms of estimating the sample
distribution! Since S∗ is easier to use for our proof, we will work with S∗
instead of Y ∗.

A.2.4 Moment Generating Function Properties

MZ(t) = MX(t)MY (t) if Z = X + Y and X and Y are independent.

Let’s call this new standardized random variable Z and find its moment gen-
erating function. Several intermediate steps are skipped due to algebra, as
one can use complete the square, exponential laws, and algebraic distribu-
tions to write exponents as powers.

MZ(t) = E[ext] =
∫∞
−∞ ext 1√

2π
e

−x2

2 dx =
∫∞
−∞

1√
2π
etx−

x2

2 dx = e
1
2
t2 .

A few properties to keep in mind.

If MA and MB are independent, then Mc(t) = MA(t)MB(t).

M r
A(0) = E[Ar].

M t
X(0) = E[X t].

A.3 Proof

Remember that S∗ = S−E[S]√
V ar(S)

= S−nµ√
nσ2

=
∑n

i=1 Xi−nµ

σ
√
n

= (X1−µ)+(X2−µ)+···+(Xn−µ)
σ
√
n

=

(X1−µ)
σ
√
n

+ (X2−µ)
σ
√
n

+ · · ·+ (Xn−µ)
σ
√
n

.
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Now let’s find the MGF of S∗.

Ms∗(t) = E[eS
∗
] = E[e

t(
(X1−µ)

σ
√
n

+···+ (Xn−µ)

σ
√
n

)
] = (E[e

t(X−µ
σ
√
n
)
])n

= (M(X−µ
σ
√
n
)(t))

n = (MX−µ(
t

σ
√
n
))n.

Expand MGF to Taylor series.

MX−µ(
t

σ
√
n
) = E[e

t(X−µ
σ
√
n
)
] = 1 + ( t

σ
√
n
)(E[X − µ]) + ( t2

2nσ2 )(E[(X − µ)2]) =

1 + ( t
σ
√
n
)(0) + ( t2

2nσ2 )(σ
2) = 1 + t2

2n
.

Since limn→∞(1 + x
n
)n = ex, limn→∞ MS∗(t) = limn→∞(1 + t2

2n
)n = e1/2t

2

If MZ(t) = e
1
2
t2 , then limn→infty MS∗(t) = MZ(t), and the distribution is also

similar that N(0, 1).
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