
HIRING MULTIPLE TEMPORARY SECRETARIES

Abstract. Similar ideas and strategies emerge from the classic secretary

problem, the multiple choice problem, and the temporary secretary problem.

We review two unique approaches to hiring k secretaries and two further ap-
proaches to the generalized problem with temporal constraints. We explain

how the algorithms build upon each other, which leads us to an overview of

recent best-in-class results as well as future research directions.

1. Introduction

The most famous variant of the classic problem was first posed and solved in the
1960s. Ferguson wrote a neat historical overview of the secretary problem in [1],
noting that the problem was considered as early as 1611 when Kepler methodically
set about finding a second wife. The multi-choice and temp secretary problems are
more recent, the latter formally posed by Fiat et al. in a 2015 paper [7]. Important
applications abound, for example choosing a set of measurements or images through
a sample trajectory in the context of robotic vision [4] or using web sites such as
Airbnb and oDesk to find short term lodging or freelance employees [7].

In this paper we compare approaches to two variations of the classic secretary
problem. The goal of this problem is to select the best secretary out of a fixed
candidate pool in an online setting. Candidates arrive sequentially so we only
know about previous candidates and the current candidate we are interviewing.
We must accept or reject a candidate immediately after her interview, and once the
choice is made, it is final.

Optimal stopping theory yields a solution to the classic problem with constant
success probability and competitive ratio 1/e in the limit as the number of can-
didates n goes to infinity. The strategy is to observe and unilaterally reject some
number of candidates r, after which point we accept the next one which is better
than all the previous. In this way, the best previous candidate provides a threshold
comparison.

The first variation, called the multiple choice secretary problem (multi-choice),
extends the classic secretary problem by asking what to do when we need to hire
k secretaries. Both the multi-choice and classic problem assume we keep the same
secretaries employed forever once they are hired.

For the multi-choice problem, there are a few natural criteria one may optimize
for [4], all of which make use of the solution method to the classic secretary problem.
In this paper, we explore the difference between optimizing for the probability of
choosing the exact k best secretaries and optimizing for the expected value of the
hired secretaries. Approaches have been proposed for both of these criteria: Girdhar
and Dudek’s fixed-threshold algorithm in [4] and Kleinberg’s recursive algorithm in
[2], respectively. The fixed-threshold algorithm finds the optimal value of r in much
the same way as the classic secretary problem, and we hire all candidates after r
that pass our threshold. Kleinberg’s algorithm recursively breaks the candidates
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into two groups, using the first group to create a threshold for selecting from the
second. In the base case, Kleinberg makes use of the classic algorithm.

The second variation, called the temporary secretary problem (temp), extends the
multiple-choice problem further by asking what to do if the secretaries’ contracts
are of fixed duration. In this setting, we imagine the sequence of candidates mapped
to various arrival times on the unit interval, and we employ those selected for an
employment term of constant duration γ which is much smaller than one.

For the temp secretary problem, Fiat et al. propose a Kleinberg-inspired recur-
sive approach called the Charter algorithm. Recently, improved results have been
found in [8] by Kesselheim and Tönnis with their linear scaling algorithm, which
more closely resembles the fixed-threshold algorithm.

In this paper, we begin by reviewing the proof of the classic secretary problem.
We proceed with a description of Kleinberg’s algorithm and the fixed-threshold
algorithm, with an examination of the relationship between the two. We then de-
scribe the Charter algorithm and the improvements of the linear scaling algorithm,
with a focus on how these arise from previous methods. We conclude with areas of
future research.

Beyond the scope of this paper are other variations such as the matroid and
knapsack secretary problems. A neat review is contained in [3] by Babaioff (the
Tarjan of secretary problems) et al.

2. Classic Secretary Problem

In the classic secretary problem, we have a set of n applicants each with value
vi and we want to hire the best one. We interview one at a time in random order,
and we must either hire or reject the candidate immediately after the interview.
We are not allowed to go back and hire a previously rejected candidate, and we
assume candidate values are distinct (or equivalently, that we have a consistent
tie-breaking scheme).

The optimal strategy is to review the first r candidates without accepting any,
find the highest score among them, then hire the first candidate with score higher
than that. As we will see, this is the fundamental stopping theory which arises
again and again in approaches to extensions of the classic problem.

To choose r, consider the probability of successfully finding the candidate of
highest value:

P(found best) =

n∑
i=r+1

P(i is best and previous candidates not selected)(2.1)

=

n∑
i=r+1

1

n

r

i− 1
(2.2)

=
r

n

n−1∑
i=r

1

i
.(2.3)

The above is true since 1
n is the probability that the ith candidate has the highest

value, and r
i−1 is the probability none of the previous candidates were selected. We

optimize the probability by optimizing the integral for which the above sum is the
Riemann approximation, which yields r = n

e , as n → ∞. A detailed proof can be
found in [5].
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We can generalize the classic secretary problem by choosing k secretaries instead
of one, and this introduces new questions [4]. Should we maximize the probability
that one of the selected secretaries is the best one, should we maximize the expected
sum of the values, or should we maximize the probability that all k of the chosen
secretaries are in fact the best?

3. Multiple Choice Secretary Problem

In the multi-choice secretary problem, we extend the classic secretary problem
by considering the hiring of k candidates from n applicants. In this domain, we
have two natural choices of functions to optimize for. We can either directly extend
the classic approach and maximize the probability of choosing the k best candi-
dates exactly, or we can maximize the expected value of the chosen candidates.
Interestingly, these two goals yield two very different algorithms and bounds which
we explore in the next couple subsections.

3.1. Maximizing Best-Case Scenario. The classic secretary algorithm already
maximizes the probability of selecting the k best candidates for k = 1. It does this
by interviewing the first r = n/e candidates and using the max as the threshold
for selecting candidates. Girdhar and Dudek extend this to multi-choice with their
fixed-threshold algorithm in [4], by making r a function of k as well as a function
of n. Intuitively, as k increases, r should decrease. They strongly suggest but do
not formally prove that the optimal r value is

(3.1) r(k) =
n

ke1/k
.

Analysis. Let success be defined by the event that all of the top k highest scoring
candidates have been selected. Let Ski be the event that with the selection of the
ith candidate, we have succeeded. Note that this is not possible for the first r+k−1
candidates. Thus,

(3.2) P (success) =

n∑
i=r+k

P (Ski ) =

n∑
i=r+k

k

n

r

i− 1

(
i−r−1
k−1

)(
n
k−1
) .

The first term is the probability the ith candidate is one of the top k candidates.
The second term is the probability that none of the previous candidates were the
last of the top k candidates. The last term is the probability that all the remaining
k − 1 candidates have been selected.

Evaluating the expression analytically is extremely difficult, but for large n, we
can numerically approximate the value of r for which this probability of success
is maximized, given k. Girdhar and Dudek demonstrate that equation 3.1 fits the
data remarkably well [4].

3.2. Maximizing Expected Value. Although maximizing probability is inter-
esting, far more applicable to real world problems is an algorithm that maximizes
the expected value of the chosen candidates.

Consider for a moment the classic secretary problem where k = 1 and the proba-
bility of choosing the best candidate tends to 1/e as n→∞. This means expected
value of the chosen candidate also tends to a competitive ratio of at least e.

This raises the question, what is the competitive ratio for larger k? A plausible
algorithm is to generalize the classic solution by using a simple sliding threshold.
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(1) Observe the first bn/ec candidates.
(2) Remember the best k candidates and call this set S.
(3) Hire every candidate that is better than the worst candidate in S and

replace the worst candidate.

Babaioff et al. showed in [3] that this is similar enough to the classic algorithm
to obtain a competitive ratio of no worse than e for all k. Kleinberg, however,
introduced a recursive algorithm that achieves a competitive ratio of 1−O(

√
1/k)

[2]. Remarkably, the competitive ratio approaches 1 as k → ∞. Since we are
already familiar with simple threshold approaches, we focus on Kleinberg’s more
challenging algorithm in this section.

3.2.1. Kleinberg’s Algorithm. The algorithm is recursively defined as follows.

(1) If k = 1, use the classic secretary algorithm to select one candidate.
(2) For k > 1, split the n candidates into two groups. See details below.
(3) Select l = bk/2c candidates from the first group recursively using this

algorithm.
(4) Select the rest of the candidates from the second group. Accept if the

candidate is better than the lth best candidate seen in the first group. Note
that this is different from the worst candidate accepted in the first group.

To split n candidates into two groups, let m be a random sample from the binomial
distribution B(n, 1/2) or the number of heads in n coin flips. Let the first group
contain the first m candidates and the second group contain the rest.

Analysis. We will outline how Kleinberg’s algorithm gives a selection with expected
value within a (1− 5√

k
) factor of the optimal value OPT ∗. This analysis will develop

intuition and tools which guide later analysis of the more complex cases.
We begin by defining the set Sk to contain the k highest-valued candidates. View

y1, . . . , ym ∈ Y and z1, . . . , zn−m ∈ Z as the left m candidates and the right n−m
candidates, respectively. These are the two groups for the recursion described in
the algorithm.

We will combine the expected values obtained in each group to prove the result.
We proceed with the left group by induction on k. We set the inductive hypothesis
as the desired result, so for the induction step, the group should be within a (1− 5√

k
)

factor of that group’s optimal value OPT .
We immediately have three key facts.

(1) The first group Y has the probability distribution B(k, 12 ) for containing
some number of elements in Sk.

(2) If there are r elements from Sk in Y , E [Y ] = r
kOPT

∗.

(3) The expected value of the best l = k
2 elements of Y is bounded below by

k∑
r=1

P (|Y ∩ Sk| = r) ·
(

min(r, l)

k

)
OPT ∗ ≥ 1

2

(
1− 1

2
√
k

)
OPT ∗.(3.3)

This is the probability Y contains r of the best elements times the propor-
tion of how many we can select out of our total times the optimal value.
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Now we are ready to induct using l = k
2 as stated in the algorithm. We take the

competitive ratio hypothesis times the expected value of the top elements from Y

(1− 5√
l
)× 1

2

(
1− 1

2
√
k

)
OPT ∗(3.4)

as the expected value the algorithm finds in the left group.
On the right, we count the number of elements q exceeding yl, the threshold

the algorithm chose. We call qi the number of elements whose value lies between
yi and yi−1. These variables are “stochastically dominated by i.i.d. geometrically
distributed random variables each having mean 1 and variance 2” [2], so their sum

from i = 1 to l, denoted q, satisfies E [|q − l|] ≤
√
k.

Let r = |q− l|, then condition on r to find expected value of selected elements is
at least (

1

2
− r

k

)
OPT ∗ = (

1

2
− 1√

k
)OPT ∗(3.5)

once we remove the conditioning and substitute for r.
Finally, we combine the left and right competitive ratios,

(1− 5√
l
)× 1

2

(
1− 1

2
√
k

)
+ (

1

2
− 1√

k
) ≥ 1 +

5
√

2

4k
− 5 + 10

√
2

4
√
k

≥ 1− 5√
k
,(3.6)

as desired.

4. Temporary Secretary Problem

In the temp secretary problem, we extend the multi-choice secretary problem by
considering the hiring of candidates who show up for interviews during the time
interval [0, 1]. Arrival times are drawn from a probability distribution, typically
uniform. We are constrained to simultaneous employment of up to B secretaries
as our “bandwidth,” and we can hire a total of up to k secretaries overall as our
“budget.” All secretaries are hired for a certain length of time γ << 1.

Just as in the previous section, we find two very different approaches which build
on their multi-choice counterparts in interesting ways. Unlike the previous section,
both approaches here have the same goal to maximize the expected value of the
chosen candidates, so we can now have a clear winner in terms of competitive ratio.

We will explore the competitive ratios of the Charter and linear scaling algo-
rithms in the following subsections, both of which are asymptotically tight for
γ → 0 [8]. We can compare the two algorithms by removing the budget constraint.

The recursive Charter algorithm of Fiat et al. attains at least 1
2 (1−O(

√
γ ln( 1

γ )))

for B = 1 and 1− O(
√
lnB√
B

) − O(
√
γ log( 1

γ )) for arbitrary B as competitive ratios

[7]. The linear scaling algorithm of Kesselheim and Tönnis beats this with a com-
petitive ratio of 1

2 −O(
√
γ) for all values of B, and 1−O( 1√

B
)−O(

√
γ) for large B

[8]. These are the best known competitive ratios for the temp secretary problem.

4.1. Recursive Approach. We are already familiar with the recursive approach
from Kleinberg’s algorithm. In fact, with contract length γ = 0 and budget k,
we have the multi-choice problem, and the Charter algorithm behaves exactly like
Kleinberg’s algorithm.

The Charter algorithm is defined in full as follows.
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(1) if k = 1, use the classic secretary algorithm to select one candidate.
(2) For k > 1, split the time interval in half and recursively process [0, 12 ) with

budget bk2 c and contract length 2γ.

(3) Use the value of the candidate of rank k
2 that appeared during [0, 12 ) as

threshold T , or if no such rank let T = 0.
(4) Greedily accept all candidates that appear during [12 , 1) with value at least

T which do not violate constraints B or k.

Interestingly, the temporal setting means that the algorithm does not rely on
prior knowledge of the total candidate count, as Kleinberg’s algorithm does.

Analysis. We will go over the proof idea for B = 1. For unconstrained budget

k = 1
γ , we want to obtain the competitive ratio 1

2

(
1−O

√
γ ln

(
1
γ

))
. We do this

through a Kleinberg-style inductive approach. The important new concept here is
that we must properly account for the feasibility of selecting elements within the
constraints.

We take the competitive ratio from theorem 2 of [7],

1

1 + γk

(
1− 7.4

√
γ ln

(
1

γ

)
− 5√

k

)
,(4.1)

as inductive hypothesis. For the inductive step, we use k
2 and 2γ per the algorithm.

The left part is easy since we just substitute to find our competitive ratio from
the hypothesis,

1

1 + γk

(
1− 7.4

√
2γ ln

(
1

2γ

)
− 5
√

2√
k

)
.(4.2)

This is the multiplier we will use on the expected value of top candidates in the left

group, OPT , which is roughlyOPT ∗/2. More precisely, OPT ≥ 1
2

(
1− 1

2
√
k

)
OPT ∗,

as Fiat et al. show with lemma 2 in [7], but also just as we saw before in inequality
3.3 from the Kleinberg analysis! Asymptotically, we find competitive ratio

1

1 + γk

(
1− 7.4

√
2γ ln

(
1

2γ

)
− 5
√

2√
k

)
× 1

2

(
1− 1

2
√
k

)
OPT ∗(4.3)

=
1

4

(
1−O

√
γ ln

(
1

γ

))
(4.4)

for the left group, when we substitute k = 1
γ .

The right side is harder, so we explain where the terms come from but leave the
detailed derivations to [7]. The idea is to end up with expected value at least

1

1 + γk

(
1− 6

√
γ ln

(
1

γ

)
− 4.5

)1−
2
√

1 + 1
k√

k
− 1

k

 1

2
OPT ∗,(4.5)

which means the right group asymptotically yields competitive ratio

1

4

(
1−O

√
γ ln

(
1

γ

))
,(4.6)
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when k = 1
γ . Adding this to the left competitive ratio clearly obtains the desired

result.
The terms in expression 4.5 represent the expected size of a feasible subset chosen

greedily by the algorithm,

1

1 + γk

(
1− 6

√
γ ln

(
1

γ

)
− 4.5

)
|OPT ∗|,(4.7)

times the summed probability that the chosen number of elements are larger than
the threshold and the expected value of an average element,1−

2
√

1 + 1
k√

k
− 1

k

 OPT ∗

2|OPT ∗|
.(4.8)

The expected size of a feasible subset in expression 4.7 is obtained from theorem
3 in [7]. The theorem makes use of n independently uniform samples to show that
the expected size of a feasible selection by the greedy algorithm is about n

1+nγ , since

the number of points that lie in a γ-interval starting at an arrival time is one for the
chosen candidate plus nγ for uniformly random points which fall into an interval

of length γ. The

(
1− 6

√
γ ln

(
1
γ

)
− 4.5

)
term comes from lemmas 6 and 9 in [7],

which bound the expected error due to feasibility overlap in the interval [ 12 ,
1
2 + γ]

where we cannot select candidates who might interfere with those selected earlier,
near the end of the left interval [ 12 − γ,

1
2 ].

The final component, expression 4.8, is obtained from lemma 5 in [7], which uses
the same idea as before in the Kleinberg analysis of the right group with “identical
geometrical random variables” [7], combined with the fact that 2dk2 e ≤ k + 1, to
lower bound the sum of probabilities that the chosen elements are larger than the
threshold. Of course, the last part is OPT∗

2|OPT∗| , the average expected value of the

right interval’s best candidates.

4.2. Linear Scaling Approach. Recall Babaioff et al.’s sliding threshold algo-
rithm mentioned in the introduction to subsection 3.2 on Kleinberg. The linear
scaling approach is strongly motivated by this remarkably straightfoward idea that
we can take incoming candidates while incrementally adjusting a smart threshold
criterion for acceptance. Kesselheim and Tönnis showed very recently in [8] that
if we are smart enough, we can obtain even better results with this simple method
than Fiat et al.’s relatively complex Charter algorithm for the temp secretary prob-
lem.

Kesselheim and Tönnis were certainly not the first to think along these lines. In
fact, Fiat et al. describe a time-slicing algorithm in [7], where they first introduced
the temp secretary problem! Their algorithm runs the classic secretary algorithm or
Kleinberg’s algorithm on slices of length 2γ, depending on the plurality of capacity
B. The first half of the slice is where the candidates are chosen. The second half
is simply left as work time for hirees from the first half, so feasibility conflicts are
avoided by not even considering candidates there. Naturally, in expectation half the
candidates are considered, so the time-slice algorithm achieves half of Kleinberg’s
1 − 5/

√
B competitive ratio or 1/2e for the classic case where B = 1. Fiat et al.
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suspected that time-slicing could be improved by making better use of information
revealed over time, and the linear scaling algorithm confirms this suspicion.

Before we describe the algorithm, we make one final note that the linear scal-
ing approach also resembles Girdhar and Dudek’s probability-maximizing fixed-
threshold algorithm, in that both alter the classic approach by changing the hiring
criterion, which is a threshold function of some parameters. Namely, the fixed-
threshold algorithm depends on the quantity of candidates n, hiring constraint k,
and candidate arrival order. By the same token, the linear scaling algorithm de-
pends on the quantity of time [0, 1], hiring constraints B and γ, and candidate
arrival time.

The linear scaling algorithm is defined as follows. For each candidate:

(1) Set t = arrival time of the next candidate.
(2) Let St be the btBγ c highest-valued candidates seen thus far.

(3) Accept the candidate if she is in St, without violating constraints B or k.

The key insight is that in expectation, a t fraction of the optimal secretaries have
been seen at time t, and the expected value of the optimal solution can be upper
bounded by the value of the B

γ highest-valued elements. So St approximates this

set by including the best btBγ c up to time t.

Analysis. We will go over the proof idea for general B. This time, we do not have
recursion, so we directly calculate the expected value of our algorithm’s tentative
selection and multiply by the probability that the selection is feasible. The full
proof is extremely lengthy (spanning both papers [8] and [6]), so we state the key
facts here for understanding how this differs from our other algorithms and leave
the details to the papers.

For unconstrained budget k = B
γ , we want to obtain the competitive ratio

1
2

(
1−O

(√
γ
))

. We divide the interval into N sub-intervals and iterate through
rounds, so round l occurs at time t such that l/N = t, and we overload notation so
Sl = St. We set N >> n large enough such that the probability two items fall into
the same interval is negligible and we can effectively assume that all items arrive at
times which are multiples of 1

N because the value of btBγ c stays constant in almost

all intervals [8].
The idea is to end up with expected value at least

b 1√
γ c−1∑
k=2

(
1

2
−
√
γ

4
− 1

4
√
γN

)(
1− 9

√
1
l
N
B
γ

)
l

N

1− 1
2

√
γ
B

1 + γ
OPT ∗(4.9)

≥
(

1

2
− 7

4

√
γ − 37

4

√
γ

B
− γ

2
− 1

4
√
γN

)
OPT ∗,(4.10)

from which we find the competitive ratio(
1

2
− 7

4

√
γ − 37

4

√
γ

B
− γ

2
− 1

4
√
γN

)
−→ 1

2
−O(

√
γ)(4.11)

as desired, since the square root of γ is asymptotically larger than γ. Now, where
do these terms in expression 4.9 come from?

We first explain the expected value of the tentative selection, then we explain
the probability that the selection is feasible.
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The expression l
N
B
γ represents the approximate size of Sl at round l. The entire

term (
1− 9

√
1
l
N
B
γ

)
l

N

1− 1
2

√
γ
B

1 + γ
OPT ∗(4.12)

comes from lemma 12 in [8] and serves to quantify how close we expect to be to
l
N
B
γ ≥ 1 − 1

2

√
γ
B . To derive expression 4.12, Kesselheim and Tönnis consider a

more general online problem of packing with linear programs in a separate paper
[6]. The idea is to maximize the profit obtained from a client’s requests without
violating resource constraints. Then results from [6] for the packing problem can
be applied. One intuitive example of this is to view the secretaries’ contracts as
having some amount of “volume” γ, and we can imagine trying to pack as many
valuable ones as possible into B unit bins as in the bin packing problem.

A further breakdown of the terms is instructive. We have the feasible proportion

of the selection,

(
1− 9

√
1
l
N
B
γ

)
, times the fraction of items seen so far, l

N , times a

factor which ensures full containment of items in the packing problem, 1 − 1
2

√
γ
B ,

times the size of the total optimal choices which we can pack, 1
1+γ |OPT

∗|, times

the average value of an item from the optimal selection, OPT∗

|OPT∗| , for l ≥ 2
√

γ
BN so

the math works out nicely.
Finally, the probability that the selection is feasible comes from lemma 3 of [8],(

1

2
−
√
γ

4
− 1

4
√
γN

)
.(4.13)

The probability is nearly 1
2 , which comes from the aforementioned fact that we can

consider time-slices of length 2γ and make selections in the first half of the slice
with certain feasibility, given that we do not select any candidates in the second
half. This is precisely the reason that we recurse with new contract length γ′ = 2γ
in the Charter algorithm, and it is also the reason that we obtain an asymptotic
competitive ratio of 1

2 as well! The lemma shows how to decouple random indicator
variables—representing the choice of a candidate and that candidate’s feasibility—
to precisely quantify how nearly we approach 1

2 , as shown in expression 4.13.

Extension To Arbitrary Contract Durations. Kesselheim and Tönnis exhibit a num-
ber of extensions to the linear scaling algorithm. One of particular interest solves
the temp secretary problem with competitive ratio at least 1

4 −O(
√
γ) for differing

contract durations λi ≤ γ [8]. To define St for this extension, order the seen items
by non-increasing metric vi

λi
and take the minimal prefix such that the sum of ele-

ment values in St is at least tB
2 . We leave the analysis to [8]; essentially, this is due

to the knapsack nature of the problem.

5. Concluding Remarks

There are very nice symmetries among the various secretary problems and the
algorithms which solve them. In this paper, we have shown how the solution to the
classic secretary problem is employed in the solutions to the multiple choice secre-
tary problem are employed in the solutions to the temporary secretary problem.

In particular, we examined the classic algorithm to understand how it finds r
and selects a threshold value. We showed how the fixed-threshold algorithm utilizes
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remarkably similar analysis in the multi-choice generalization, which is used numer-
ically to obtain r, optimizing for the probability of selecting the best candidates.
We discussed how Kleinberg’s approach to the multi-choice problem optimizes for
the expected value candidates provide, and it does so recursively to obtain an
optimal 1-competitive algorithm as k goes to infinity. We demonstrated how Klein-
berg’s algorithm inspires the Charter algorithm for the temp secretary problem,
specifically through the recursive structure which leads to a similar inductive proof
method. We expounded on the motivations for the linear scaling algorithm, from
threshold-sliding and time-slicing, as well as the similarities to the fixed-threshold
algorithm. Through analysis of this simple yet powerful algorithm, we observed how
the contract duration influences the recursive parameters in the Charter algorithm
and limits the competitive ratio due to feasibility constraints. In addition to the
algorithms’ relationships, throughout the paper we elaborated on the similarities
and differences between the problems themselves, for instance how the dependence
on n no longer plays a vital role in the temp secretary problem as it does in the
others.

There are a few areas of further research which would be of practical and the-
oretical interest to explore. For the multi-choice problem, a comparison of the
expected value of selected secretaries from Kleinberg versus fixed-threshold would
be very interesting. It is likely that Kleinberg is always better since it optimizes
for expected value. However, for large n it may be that the running time for the
simpler fixed-threshold algorithm is superior in practice and still yields acceptable
results.

For the temp secretary problem, arrival times from a prior other than the uniform
distribution would be very interesting to analyze since no work has been done for
this particular setting without the uniformly i.i.d. assumption. It is already clear
that the linear scaling algorithm obtains better results than the Charter algorithm
for uniform arrival distributions, but perhaps they behave differently for other
distributions or knapsack extensions, since the linear approach for scaling might
become quite problematic, and the even interval divisions in Charter might require
modification as well, though this would be easy to fix with knowledge of the prior.
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